Cargando…

Formation of a highly dense tetra-rhenium cluster in a protein crystal and its implications in medical imaging

The fact that a protein crystal can serve as a chemical reaction vessel is intrinsically fascinating. That it can produce an electron-dense tetranuclear rhenium cluster compound from a rhenium tri­carbonyl tri­bromo starting compound adds to the fascination. Such a cluster has been synthesized previ...

Descripción completa

Detalles Bibliográficos
Autores principales: Brink, Alice, Helliwell, John R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608631/
https://www.ncbi.nlm.nih.gov/pubmed/31316813
http://dx.doi.org/10.1107/S2052252519006651
Descripción
Sumario:The fact that a protein crystal can serve as a chemical reaction vessel is intrinsically fascinating. That it can produce an electron-dense tetranuclear rhenium cluster compound from a rhenium tri­carbonyl tri­bromo starting compound adds to the fascination. Such a cluster has been synthesized previously in vitro, where it formed under basic conditions. Therefore, its synthesis in a protein crystal grown at pH 4.5 is even more unexpected. The X-ray crystal structures presented here are for the protein hen egg-white lysozyme incubated with a rhenium tri­carbonyl tri­bromo compound for periods of one and two years. These reveal a completed, very well resolved, tetra-rhenium cluster after two years and an intermediate state, where the carbonyl ligands to the rhenium cluster are not yet clearly resolved, after one year. A dense tetranuclear rhenium cluster, and its technetium form, offer enhanced contrast in medical imaging. Stimulated by these crystallography results, the unusual formation of such a species directly in an in vivo situation has been considered. It offers a new option for medical imaging compounds, particularly when considering the application of the pre-formed tetranuclear cluster, suggesting that it may be suitable for medical diagnosis because of its stability, preference of formation and biological compatibility.