Cargando…

Multivariate temporal modeling of crime with dynamic linear models

Interest in modeling contemporary crime trends, a task that has historically been considered valuable to the public, researchers, and policymakers, is resurging. Advancements in criminology have made it clear that understanding crime trends necessarily involves understanding trends in how likely ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Garton, Nathaniel, Niemi, Jarad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608923/
https://www.ncbi.nlm.nih.gov/pubmed/31269023
http://dx.doi.org/10.1371/journal.pone.0218375
Descripción
Sumario:Interest in modeling contemporary crime trends, a task that has historically been considered valuable to the public, researchers, and policymakers, is resurging. Advancements in criminology have made it clear that understanding crime trends necessarily involves understanding trends in how likely individuals are to report crimes to the police, as well as how likely the police are to accurately record those crimes. In this paper, we use dynamic linear models to simultaneously model the time series for several crime types in order to gain insight into trends in crime and crime reporting. We analyze crime data from Chicago spanning 2007 through 2016 and show how correlations in the way crime trends evolve may contain information about drivers of crime and crime reporting. We provide evidence of substantial differences in the relationships between the trends of crimes of different types depending on whether crimes are violent or nonviolent and whether or not crimes are tracked in the FBI’s Uniform Crime Report.