Cargando…

Front-end Weber-Fechner gain control enhances the fidelity of combinatorial odor coding

We showed previously (Gorur-Shandilya et al., 2017) that Drosophila olfactory receptor neurons (ORNs) expressing the co-receptor Orco scale their gain inversely with mean odor intensity according to Weber-Fechner’s law. Here, we show that this front-end adaptation promotes the reconstruction of odor...

Descripción completa

Detalles Bibliográficos
Autores principales: Kadakia, Nirag, Emonet, Thierry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609331/
https://www.ncbi.nlm.nih.gov/pubmed/31251174
http://dx.doi.org/10.7554/eLife.45293
Descripción
Sumario:We showed previously (Gorur-Shandilya et al., 2017) that Drosophila olfactory receptor neurons (ORNs) expressing the co-receptor Orco scale their gain inversely with mean odor intensity according to Weber-Fechner’s law. Here, we show that this front-end adaptation promotes the reconstruction of odor identity from dynamic odor signals, even in the presence of confounding background odors and rapid intensity fluctuations. These enhancements are further aided by known downstream transformations in the antennal lobe and mushroom body. Our results, which are applicable to various odor classification and reconstruction schemes, stem from the fact that this adaptation mechanism is not intrinsic to the identity of the receptor involved. Instead, a feedback mechanism adjusts receptor sensitivity based on the activity of the receptor-Orco complex, according to Weber-Fechner’s law. Thus, a common scaling of the gain across Orco-expressing ORNs may be a key feature of ORN adaptation that helps preserve combinatorial odor codes in naturalistic landscapes.