Cargando…
Assessing radiomic feature robustness to interpolation in (18)F-FDG PET imaging
Radiomic studies link quantitative imaging features to patient outcomes in an effort to personalise treatment in oncology. To be clinically useful, a radiomic feature must be robust to image processing steps, which has made robustness testing a necessity for many technical aspects of feature extract...
Autores principales: | Whybra, Philip, Parkinson, Craig, Foley, Kieran, Staffurth, John, Spezi, Emiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609613/ https://www.ncbi.nlm.nih.gov/pubmed/31273242 http://dx.doi.org/10.1038/s41598-019-46030-0 |
Ejemplares similares
-
Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods
por: Parkinson, Craig, et al.
Publicado: (2018) -
Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer
por: Piazzese, Concetta, et al.
Publicado: (2019) -
Sensitivity of standardised radiomics algorithms to mask generation across different software platforms
por: Whybra, Philip, et al.
Publicado: (2023) -
Radiomic Features of (18)F-FDG PET in Hodgkin Lymphoma Are Predictive of Outcomes
por: Zhou, Yeye, et al.
Publicado: (2021) -
Quantitative accuracy of radiomic features of low-dose (18)F-FDG PET imaging
por: Gao, Xin, et al.
Publicado: (2020)