Cargando…

Response of bacterial communities in rubber plantations to different fertilizer treatments

In the present study, the effects of chemical fertilizer (CF) and organic fertilizer plus chemical fertilizer application (OF–CF) on natural rubber yield, soil properties, and soil bacterial community were systematically investigated in rubber plantations. The rubber dry yield was 26.3% more in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiyang, Zhang, Peisong, Lin, Qinghuo, Cha, Zhengzao, Luo, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609652/
https://www.ncbi.nlm.nih.gov/pubmed/31297306
http://dx.doi.org/10.1007/s13205-019-1821-6
Descripción
Sumario:In the present study, the effects of chemical fertilizer (CF) and organic fertilizer plus chemical fertilizer application (OF–CF) on natural rubber yield, soil properties, and soil bacterial community were systematically investigated in rubber plantations. The rubber dry yield was 26.3% more in the OF treatment group than in the CF treatment group. The contents of total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) as well as soil organic matter (SOM) and pH value were higher following OF–CF treatment. Using Illumina sequencing, a total of 927 operational taxonomic units (OTUs) were obtained following CF treatment, while 955 OTUs were obtained after OF–CF treatment. Relative abundance analysis showed the relative abundances of four phyla (Acidobacteria, Proteobacteria, Actinobacteria, Gemmatimonadetes) were different between the two treatment groups. Correlation analysis revealed Acidobacteria, Bacteroidetes, Thaumarchaeota, Elusimicrobia, Verrucomicrobia were the key taxa that determined the soil properties. Additionally, five OTUs (OTU_506, OTU_391, OTU_189, OTU_278, OTU_1057) were thought to be related to the biodegradation of natural rubber. Taken together, these results improve our understanding of the OF-mediated improvement in soil fertility and contribute to the identification of rubber-degrading bacteria in rubber plantations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13205-019-1821-6) contains supplementary material, which is available to authorized users.