Cargando…

Adaptive neural network classifier for decoding MEG signals

We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing...

Descripción completa

Detalles Bibliográficos
Autores principales: Zubarev, Ivan, Zetter, Rasmus, Halme, Hanna-Leena, Parkkonen, Lauri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609925/
https://www.ncbi.nlm.nih.gov/pubmed/31059799
http://dx.doi.org/10.1016/j.neuroimage.2019.04.068
_version_ 1783432410124255232
author Zubarev, Ivan
Zetter, Rasmus
Halme, Hanna-Leena
Parkkonen, Lauri
author_facet Zubarev, Ivan
Zetter, Rasmus
Halme, Hanna-Leena
Parkkonen, Lauri
author_sort Zubarev, Ivan
collection PubMed
description We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing classification. The proposed networks outperform traditional classifiers as well as more complex neural networks when decoding evoked and induced responses to different stimuli across subjects. Importantly, these models can successfully generalize to new subjects in real-time classification enabling more efficient brain–computer interfaces (BCI).
format Online
Article
Text
id pubmed-6609925
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-66099252019-08-15 Adaptive neural network classifier for decoding MEG signals Zubarev, Ivan Zetter, Rasmus Halme, Hanna-Leena Parkkonen, Lauri Neuroimage Article We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing classification. The proposed networks outperform traditional classifiers as well as more complex neural networks when decoding evoked and induced responses to different stimuli across subjects. Importantly, these models can successfully generalize to new subjects in real-time classification enabling more efficient brain–computer interfaces (BCI). Academic Press 2019-08-15 /pmc/articles/PMC6609925/ /pubmed/31059799 http://dx.doi.org/10.1016/j.neuroimage.2019.04.068 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Zubarev, Ivan
Zetter, Rasmus
Halme, Hanna-Leena
Parkkonen, Lauri
Adaptive neural network classifier for decoding MEG signals
title Adaptive neural network classifier for decoding MEG signals
title_full Adaptive neural network classifier for decoding MEG signals
title_fullStr Adaptive neural network classifier for decoding MEG signals
title_full_unstemmed Adaptive neural network classifier for decoding MEG signals
title_short Adaptive neural network classifier for decoding MEG signals
title_sort adaptive neural network classifier for decoding meg signals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609925/
https://www.ncbi.nlm.nih.gov/pubmed/31059799
http://dx.doi.org/10.1016/j.neuroimage.2019.04.068
work_keys_str_mv AT zubarevivan adaptiveneuralnetworkclassifierfordecodingmegsignals
AT zetterrasmus adaptiveneuralnetworkclassifierfordecodingmegsignals
AT halmehannaleena adaptiveneuralnetworkclassifierfordecodingmegsignals
AT parkkonenlauri adaptiveneuralnetworkclassifierfordecodingmegsignals