Cargando…
Adaptive neural network classifier for decoding MEG signals
We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609925/ https://www.ncbi.nlm.nih.gov/pubmed/31059799 http://dx.doi.org/10.1016/j.neuroimage.2019.04.068 |
_version_ | 1783432410124255232 |
---|---|
author | Zubarev, Ivan Zetter, Rasmus Halme, Hanna-Leena Parkkonen, Lauri |
author_facet | Zubarev, Ivan Zetter, Rasmus Halme, Hanna-Leena Parkkonen, Lauri |
author_sort | Zubarev, Ivan |
collection | PubMed |
description | We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing classification. The proposed networks outperform traditional classifiers as well as more complex neural networks when decoding evoked and induced responses to different stimuli across subjects. Importantly, these models can successfully generalize to new subjects in real-time classification enabling more efficient brain–computer interfaces (BCI). |
format | Online Article Text |
id | pubmed-6609925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66099252019-08-15 Adaptive neural network classifier for decoding MEG signals Zubarev, Ivan Zetter, Rasmus Halme, Hanna-Leena Parkkonen, Lauri Neuroimage Article We introduce two Convolutional Neural Network (CNN) classifiers optimized for inferring brain states from magnetoencephalographic (MEG) measurements. Network design follows a generative model of the electromagnetic (EEG and MEG) brain signals allowing explorative analysis of neural sources informing classification. The proposed networks outperform traditional classifiers as well as more complex neural networks when decoding evoked and induced responses to different stimuli across subjects. Importantly, these models can successfully generalize to new subjects in real-time classification enabling more efficient brain–computer interfaces (BCI). Academic Press 2019-08-15 /pmc/articles/PMC6609925/ /pubmed/31059799 http://dx.doi.org/10.1016/j.neuroimage.2019.04.068 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Zubarev, Ivan Zetter, Rasmus Halme, Hanna-Leena Parkkonen, Lauri Adaptive neural network classifier for decoding MEG signals |
title | Adaptive neural network classifier for decoding MEG signals |
title_full | Adaptive neural network classifier for decoding MEG signals |
title_fullStr | Adaptive neural network classifier for decoding MEG signals |
title_full_unstemmed | Adaptive neural network classifier for decoding MEG signals |
title_short | Adaptive neural network classifier for decoding MEG signals |
title_sort | adaptive neural network classifier for decoding meg signals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609925/ https://www.ncbi.nlm.nih.gov/pubmed/31059799 http://dx.doi.org/10.1016/j.neuroimage.2019.04.068 |
work_keys_str_mv | AT zubarevivan adaptiveneuralnetworkclassifierfordecodingmegsignals AT zetterrasmus adaptiveneuralnetworkclassifierfordecodingmegsignals AT halmehannaleena adaptiveneuralnetworkclassifierfordecodingmegsignals AT parkkonenlauri adaptiveneuralnetworkclassifierfordecodingmegsignals |