Cargando…

Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon

Silicon spin qubits have emerged as a promising path to large-scale quantum processors. In this prospect, the development of scalable qubit readout schemes involving a minimal device overhead is a compelling step. Here we report the implementation of gate-coupled rf reflectometry for the dispersive...

Descripción completa

Detalles Bibliográficos
Autores principales: Crippa, A., Ezzouch, R., Aprá, A., Amisse, A., Laviéville, R., Hutin, L., Bertrand, B., Vinet, M., Urdampilleta, M., Meunier, T., Sanquer, M., Jehl, X., Maurand, R., De Franceschi, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610084/
https://www.ncbi.nlm.nih.gov/pubmed/31270319
http://dx.doi.org/10.1038/s41467-019-10848-z
Descripción
Sumario:Silicon spin qubits have emerged as a promising path to large-scale quantum processors. In this prospect, the development of scalable qubit readout schemes involving a minimal device overhead is a compelling step. Here we report the implementation of gate-coupled rf reflectometry for the dispersive readout of a fully functional spin qubit device. We use a p-type double-gate transistor made using industry-standard silicon technology. The first gate confines a hole quantum dot encoding the spin qubit, the second one a helper dot enabling readout. The qubit state is measured through the phase response of a lumped-element resonator to spin-selective interdot tunneling. The demonstrated qubit readout scheme requires no coupling to a Fermi reservoir, thereby offering a compact and potentially scalable solution whose operation may be extended above 1 K.