Cargando…
HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods
Recent data indicate that up-to 30–40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological ne...
Autores principales: | Veselkov, Kirill, Gonzalez, Guadalupe, Aljifri, Shahad, Galea, Dieter, Mirnezami, Reza, Youssef, Jozef, Bronstein, Michael, Laponogov, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610092/ https://www.ncbi.nlm.nih.gov/pubmed/31270435 http://dx.doi.org/10.1038/s41598-019-45349-y |
Ejemplares similares
-
Network machine learning maps phytochemically rich “Hyperfoods” to fight COVID-19
por: Laponogov, Ivan, et al.
Publicado: (2021) -
Predicting anticancer hyperfoods with graph convolutional networks
por: Gonzalez, Guadalupe, et al.
Publicado: (2021) -
ChemDistiller: an engine for metabolite annotation in mass spectrometry
por: Laponogov, Ivan, et al.
Publicado: (2018) -
Genomic-driven nutritional interventions for radiotherapy-resistant rectal cancer patient
por: Southern, Joshua, et al.
Publicado: (2023) -
Exploiting and assessing multi-source data for supervised biomedical named entity recognition
por: Galea, Dieter, et al.
Publicado: (2018)