Cargando…
Dilated Saliency U-Net for White Matter Hyperintensities Segmentation Using Irregularity Age Map
White matter hyperintensities (WMH) appear as regions of abnormally high signal intensity on T2-weighted magnetic resonance image (MRI) sequences. In particular, WMH have been noteworthy in age-related neuroscience for being a crucial biomarker for all types of dementia and brain aging processes. Th...
Autores principales: | Jeong, Yunhee, Rachmadi, Muhammad Febrian, Valdés-Hernández, Maria del C., Komura, Taku |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610522/ https://www.ncbi.nlm.nih.gov/pubmed/31316369 http://dx.doi.org/10.3389/fnagi.2019.00150 |
Ejemplares similares
-
Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks
por: Rachmadi, Muhammad Febrian, et al.
Publicado: (2020) -
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
por: Sundaresan, Vaanathi, et al.
Publicado: (2021) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021) -
Evaluation of Enhanced Learning Techniques for Segmenting Ischaemic Stroke Lesions in Brain Magnetic Resonance Perfusion Images Using a Convolutional Neural Network Scheme
por: Pérez Malla, Carlos Uziel, et al.
Publicado: (2019) -
Validation of Automated White Matter Hyperintensity Segmentation
por: Smart, Sean D., et al.
Publicado: (2011)