Cargando…
A Spike Time-Dependent Online Learning Algorithm Derived From Biological Olfaction
We have developed a spiking neural network (SNN) algorithm for signal restoration and identification based on principles extracted from the mammalian olfactory system and broadly applicable to input from arbitrary sensor arrays. For interpretability and development purposes, we here examine the prop...
Autores principales: | Borthakur, Ayon, Cleland, Thomas A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610532/ https://www.ncbi.nlm.nih.gov/pubmed/31316339 http://dx.doi.org/10.3389/fnins.2019.00656 |
Ejemplares similares
-
Sequential mechanisms underlying concentration invariance in biological olfaction
por: Cleland, Thomas A., et al.
Publicado: (2012) -
A Systematic Framework for Olfactory Bulb Signal Transformations
por: Cleland, Thomas A., et al.
Publicado: (2020) -
Decorrelation of Odor Representations via Spike Timing-Dependent Plasticity
por: Linster, Christiane, et al.
Publicado: (2010) -
Somatostatin, Olfaction, and Neurodegeneration
por: Saiz-Sanchez, Daniel, et al.
Publicado: (2020) -
More than meets the AI: The possibilities and limits of machine learning in olfaction
por: Barwich, Ann-Sophie, et al.
Publicado: (2022)