Cargando…
An improved framework to predict river flow time series data
Due to non-stationary and noise characteristics of river flow time series data, some pre-processing methods are adopted to address the multi-scale and noise complexity. In this paper, we proposed an improved framework comprising Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Empi...
Autores principales: | Nazir, Hafiza Mamona, Hussain, Ijaz, Ahmad, Ishfaq, Faisal, Muhammad, Almanjahie, Ibrahim M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610541/ https://www.ncbi.nlm.nih.gov/pubmed/31304058 http://dx.doi.org/10.7717/peerj.7183 |
Ejemplares similares
-
Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model
por: Nazir, Hafiza Mamona, et al.
Publicado: (2019) -
Dependence structure analysis of multisite river inflow data using vine copula-CEEMDAN based hybrid model
por: Nazir, Hafiza Mamona, et al.
Publicado: (2020) -
Predicting temperature curve based on fast kNN local linear estimation of the conditional distribution function
por: Almanjahie, Ibrahim M., et al.
Publicado: (2021) -
Capturing asymmetry in COVID-19 counts using an improved skewness measure for time series data
por: Bapat, Sudeep R.
Publicado: (2023) -
A new comprehensive approach for regional drought monitoring
por: Niaz, Rizwan, et al.
Publicado: (2022)