Cargando…

Tunable vector-vortex beam optical parametric oscillator

Vector-vortex beams, having both phase and polarization singularities, are of great interest for a variety of applications. Generally, such beams are produced through systematic control of phase and polarization of the laser beam, typically external to the source. However, efforts have been made to...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Varun, Kumar, S. Chaitanya, Aadhi, A., Ye, H., Samanta, G. K., Ebrahim-Zadeh, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610648/
https://www.ncbi.nlm.nih.gov/pubmed/31270388
http://dx.doi.org/10.1038/s41598-019-46016-y
Descripción
Sumario:Vector-vortex beams, having both phase and polarization singularities, are of great interest for a variety of applications. Generally, such beams are produced through systematic control of phase and polarization of the laser beam, typically external to the source. However, efforts have been made to generate vector-vortex beams directly from the laser source. Given the operation of the laser at discrete wavelengths, vector-vortices are generated with limited or no wavelength tunability. Here, we report an experimental scheme for the direct generation of vector-vortex beams. Exploiting the orbital angular momentum conservation and the broad wavelength versatility of an optical parametric oscillator, we systematically control the polarization of the resonant beam using a pair of intracavity quarter-wave plates to generate coherent vector-vortex beam tunable across 964–990 nm, with output states represented on the higher-order Poincaré sphere. The generic experimental scheme paves the way for new sources of structured beams in any wavelength range across the optical spectrum and in all time-scales from continuous-wave to ultrafast regime.