Cargando…

Data on forecasting energy prices using machine learning

This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied,...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrera, Gabriel Paes, Constantino, Michel, Tabak, Benjamin Miranda, Pistori, Hemerson, Su, Jen-Je, Naranpanawa, Athula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610706/
https://www.ncbi.nlm.nih.gov/pubmed/31312697
http://dx.doi.org/10.1016/j.dib.2019.104122
Descripción
Sumario:This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied, i.e. a hybridization of traditional econometric models, artificial neural networks, random forests, and the no-change method. Data is divided into 80-20% ratio for training and test respectively and RMSE, MAPE, and M-DM test used for performance evaluation. Other methods can be applied to the dataset and used as a benchmark.