Cargando…
Data on forecasting energy prices using machine learning
This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610706/ https://www.ncbi.nlm.nih.gov/pubmed/31312697 http://dx.doi.org/10.1016/j.dib.2019.104122 |
_version_ | 1783432551342276608 |
---|---|
author | Herrera, Gabriel Paes Constantino, Michel Tabak, Benjamin Miranda Pistori, Hemerson Su, Jen-Je Naranpanawa, Athula |
author_facet | Herrera, Gabriel Paes Constantino, Michel Tabak, Benjamin Miranda Pistori, Hemerson Su, Jen-Je Naranpanawa, Athula |
author_sort | Herrera, Gabriel Paes |
collection | PubMed |
description | This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied, i.e. a hybridization of traditional econometric models, artificial neural networks, random forests, and the no-change method. Data is divided into 80-20% ratio for training and test respectively and RMSE, MAPE, and M-DM test used for performance evaluation. Other methods can be applied to the dataset and used as a benchmark. |
format | Online Article Text |
id | pubmed-6610706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66107062019-07-16 Data on forecasting energy prices using machine learning Herrera, Gabriel Paes Constantino, Michel Tabak, Benjamin Miranda Pistori, Hemerson Su, Jen-Je Naranpanawa, Athula Data Brief Economics, Econometrics and Finance This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied, i.e. a hybridization of traditional econometric models, artificial neural networks, random forests, and the no-change method. Data is divided into 80-20% ratio for training and test respectively and RMSE, MAPE, and M-DM test used for performance evaluation. Other methods can be applied to the dataset and used as a benchmark. Elsevier 2019-06-12 /pmc/articles/PMC6610706/ /pubmed/31312697 http://dx.doi.org/10.1016/j.dib.2019.104122 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Economics, Econometrics and Finance Herrera, Gabriel Paes Constantino, Michel Tabak, Benjamin Miranda Pistori, Hemerson Su, Jen-Je Naranpanawa, Athula Data on forecasting energy prices using machine learning |
title | Data on forecasting energy prices using machine learning |
title_full | Data on forecasting energy prices using machine learning |
title_fullStr | Data on forecasting energy prices using machine learning |
title_full_unstemmed | Data on forecasting energy prices using machine learning |
title_short | Data on forecasting energy prices using machine learning |
title_sort | data on forecasting energy prices using machine learning |
topic | Economics, Econometrics and Finance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610706/ https://www.ncbi.nlm.nih.gov/pubmed/31312697 http://dx.doi.org/10.1016/j.dib.2019.104122 |
work_keys_str_mv | AT herreragabrielpaes dataonforecastingenergypricesusingmachinelearning AT constantinomichel dataonforecastingenergypricesusingmachinelearning AT tabakbenjaminmiranda dataonforecastingenergypricesusingmachinelearning AT pistorihemerson dataonforecastingenergypricesusingmachinelearning AT sujenje dataonforecastingenergypricesusingmachinelearning AT naranpanawaathula dataonforecastingenergypricesusingmachinelearning |