Cargando…

Data on forecasting energy prices using machine learning

This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied,...

Descripción completa

Detalles Bibliográficos
Autores principales: Herrera, Gabriel Paes, Constantino, Michel, Tabak, Benjamin Miranda, Pistori, Hemerson, Su, Jen-Je, Naranpanawa, Athula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610706/
https://www.ncbi.nlm.nih.gov/pubmed/31312697
http://dx.doi.org/10.1016/j.dib.2019.104122
_version_ 1783432551342276608
author Herrera, Gabriel Paes
Constantino, Michel
Tabak, Benjamin Miranda
Pistori, Hemerson
Su, Jen-Je
Naranpanawa, Athula
author_facet Herrera, Gabriel Paes
Constantino, Michel
Tabak, Benjamin Miranda
Pistori, Hemerson
Su, Jen-Je
Naranpanawa, Athula
author_sort Herrera, Gabriel Paes
collection PubMed
description This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied, i.e. a hybridization of traditional econometric models, artificial neural networks, random forests, and the no-change method. Data is divided into 80-20% ratio for training and test respectively and RMSE, MAPE, and M-DM test used for performance evaluation. Other methods can be applied to the dataset and used as a benchmark.
format Online
Article
Text
id pubmed-6610706
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-66107062019-07-16 Data on forecasting energy prices using machine learning Herrera, Gabriel Paes Constantino, Michel Tabak, Benjamin Miranda Pistori, Hemerson Su, Jen-Je Naranpanawa, Athula Data Brief Economics, Econometrics and Finance This article contains the data related to the research article “Long-term forecast of energy commodities price using machine learning” (Herrera et al., 2019). The datasets contain monthly prices of six main energy commodities covering a large period of nearly four decades. Four methods are applied, i.e. a hybridization of traditional econometric models, artificial neural networks, random forests, and the no-change method. Data is divided into 80-20% ratio for training and test respectively and RMSE, MAPE, and M-DM test used for performance evaluation. Other methods can be applied to the dataset and used as a benchmark. Elsevier 2019-06-12 /pmc/articles/PMC6610706/ /pubmed/31312697 http://dx.doi.org/10.1016/j.dib.2019.104122 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Economics, Econometrics and Finance
Herrera, Gabriel Paes
Constantino, Michel
Tabak, Benjamin Miranda
Pistori, Hemerson
Su, Jen-Je
Naranpanawa, Athula
Data on forecasting energy prices using machine learning
title Data on forecasting energy prices using machine learning
title_full Data on forecasting energy prices using machine learning
title_fullStr Data on forecasting energy prices using machine learning
title_full_unstemmed Data on forecasting energy prices using machine learning
title_short Data on forecasting energy prices using machine learning
title_sort data on forecasting energy prices using machine learning
topic Economics, Econometrics and Finance
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610706/
https://www.ncbi.nlm.nih.gov/pubmed/31312697
http://dx.doi.org/10.1016/j.dib.2019.104122
work_keys_str_mv AT herreragabrielpaes dataonforecastingenergypricesusingmachinelearning
AT constantinomichel dataonforecastingenergypricesusingmachinelearning
AT tabakbenjaminmiranda dataonforecastingenergypricesusingmachinelearning
AT pistorihemerson dataonforecastingenergypricesusingmachinelearning
AT sujenje dataonforecastingenergypricesusingmachinelearning
AT naranpanawaathula dataonforecastingenergypricesusingmachinelearning