Cargando…

Properties Investigation of GO/HA/Pt Composite Thin Film

Hydroxyapatite/graphene oxide/platinum (HA/GO/Pt) nanocomposite was synthesized and electrodeposited on a pure zirconium substrate. The coated zirconium was annealed at 200, 300, 400, and 600°C in vacuum furnace in presence of argon gas. The structure and morphology of the coated samples were charac...

Descripción completa

Detalles Bibliográficos
Autores principales: Alyafei, Huda F. S. G., Fu, W., Zalnezhad, E., Jaber, F., Hamouda, A. M. S., Musharavati, F., Bae, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610737/
https://www.ncbi.nlm.nih.gov/pubmed/31321236
http://dx.doi.org/10.1155/2019/4847932
Descripción
Sumario:Hydroxyapatite/graphene oxide/platinum (HA/GO/Pt) nanocomposite was synthesized and electrodeposited on a pure zirconium substrate. The coated zirconium was annealed at 200, 300, 400, and 600°C in vacuum furnace in presence of argon gas. The structure and morphology of the coated samples were characterized. Biocompatibility and wear and corrosion resistances of specimens were examined. The result of corrosion tests shows that the graphene into HA/Pt composites significantly improves their corrosion resistance. The wear tests results of uncoated and coated samples before and after annealing show that coated samples annealed at 300°C had better wear resistance compared with uncoated and coated samples at other temperatures. Furthermore, the biocompatibility test shows that the coatings improved the cell attachment and proliferation compared to the pure zirconium substrate.