Cargando…
Machine-learning Prognostic Models from the 2014–16 Ebola Outbreak: Data-harmonization Challenges, Validation Strategies, and mHealth Applications
BACKGROUND: Ebola virus disease (EVD) plagues low-resource and difficult-to-access settings. Machine learning prognostic models and mHealth tools could improve the understanding and use of evidence-based care guidelines in such settings. However, data incompleteness and lack of interoperability limi...
Autores principales: | Colubri, Andres, Hartley, Mary-Anne, Siakor, Matthew, Wolfman, Vanessa, Felix, August, Sesay, Tom, Shaffer, Jeffrey G., Garry, Robert F., Grant, Donald S., Levine, Adam C., Sabeti, Pardis C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610774/ https://www.ncbi.nlm.nih.gov/pubmed/31312805 http://dx.doi.org/10.1016/j.eclinm.2019.06.003 |
Ejemplares similares
-
The natural history of acute Ebola Virus Disease among patients managed in five Ebola treatment units in West Africa: A retrospective cohort study
por: Skrable, Kelly, et al.
Publicado: (2017) -
Transforming Clinical Data into Actionable Prognosis Models: Machine-Learning Framework and Field-Deployable App to Predict Outcome of Ebola Patients
por: Colubri, Andres, et al.
Publicado: (2016) -
Paediatric morbidity and mortality in Sierra Leone. Have things changed after the 2014/2015 Ebola outbreak?
por: Sesay, Tom, et al.
Publicado: (2020) -
Preventing Outbreaks through Interactive, Experiential Real-Life Simulations
por: Colubri, Andrés, et al.
Publicado: (2020) -
Ebola outbreak in Western Africa 2014: what is going on with Ebola virus?
por: Na, Woonsung, et al.
Publicado: (2015)