Cargando…

Exploring the information transmission properties of noise-induced dynamics: application to glioma differentiation

BACKGROUND: Cells operate in an uncertain environment, where critical cell decisions must be enacted in the presence of biochemical noise. Information theory can measure the extent to which such noise perturbs normal cellular function, in which cells must perceive environmental cues and relay signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Sai, Aditya, Kong, Nan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6610902/
https://www.ncbi.nlm.nih.gov/pubmed/31272368
http://dx.doi.org/10.1186/s12859-019-2970-7
Descripción
Sumario:BACKGROUND: Cells operate in an uncertain environment, where critical cell decisions must be enacted in the presence of biochemical noise. Information theory can measure the extent to which such noise perturbs normal cellular function, in which cells must perceive environmental cues and relay signals accurately to make timely and informed decisions. Using multivariate response data can greatly improve estimates of the latent information content underlying important cell fates, like differentiation. RESULTS: We undertake an information theoretic analysis of two stochastic models concerning glioma differentiation therapy, an alternative cancer treatment modality whose underlying intracellular mechanisms remain poorly understood. Discernible changes in response dynamics, as captured by summary measures, were observed at low noise levels. Mitigating certain feedback mechanisms present in the signaling network improved information transmission overall, as did targeted subsampling and clustering of response dynamics. CONCLUSION: Computing the channel capacity of noisy signaling pathways present great probative value in uncovering the prevalent trends in noise-induced dynamics. Areas of high dynamical variation can provide concise snapshots of informative system behavior that may otherwise be overlooked. Through this approach, we can examine the delicate interplay between noise and information, from signal to response, through the observed behavior of relevant system components. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2970-7) contains supplementary material, which is available to authorized users.