Cargando…
An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data
Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611141/ https://www.ncbi.nlm.nih.gov/pubmed/31316748 http://dx.doi.org/10.12688/f1000research.15830.2 |
_version_ | 1783432634924269568 |
---|---|
author | Mah, Clarence K. Wenzel, Alexander T. Juarez, Edwin F. Tabor, Thorin Reich, Michael M. Mesirov, Jill P. |
author_facet | Mah, Clarence K. Wenzel, Alexander T. Juarez, Edwin F. Tabor, Thorin Reich, Michael M. Mesirov, Jill P. |
author_sort | Mah, Clarence K. |
collection | PubMed |
description | Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types. |
format | Online Article Text |
id | pubmed-6611141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-66111412019-07-16 An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data Mah, Clarence K. Wenzel, Alexander T. Juarez, Edwin F. Tabor, Thorin Reich, Michael M. Mesirov, Jill P. F1000Res Software Tool Article Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types. F1000 Research Limited 2019-05-29 /pmc/articles/PMC6611141/ /pubmed/31316748 http://dx.doi.org/10.12688/f1000research.15830.2 Text en Copyright: © 2019 Mah CK et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Tool Article Mah, Clarence K. Wenzel, Alexander T. Juarez, Edwin F. Tabor, Thorin Reich, Michael M. Mesirov, Jill P. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data |
title | An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data |
title_full | An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data |
title_fullStr | An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data |
title_full_unstemmed | An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data |
title_short | An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data |
title_sort | accessible, interactive genepattern notebook for analysis and exploration of single-cell transcriptomic data |
topic | Software Tool Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611141/ https://www.ncbi.nlm.nih.gov/pubmed/31316748 http://dx.doi.org/10.12688/f1000research.15830.2 |
work_keys_str_mv | AT mahclarencek anaccessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT wenzelalexandert anaccessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT juarezedwinf anaccessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT taborthorin anaccessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT reichmichaelm anaccessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT mesirovjillp anaccessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT mahclarencek accessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT wenzelalexandert accessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT juarezedwinf accessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT taborthorin accessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT reichmichaelm accessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata AT mesirovjillp accessibleinteractivegenepatternnotebookforanalysisandexplorationofsinglecelltranscriptomicdata |