Cargando…
Large-scale analysis of B-cell epitopes of envelope: Implications for Zika vaccine and immunotherapeutic development
Background: Cases of the re-emergence of Zika virus in 2015 were associated with severe neurologic complications, including Gillien-Barre syndrome in adults and congenital Zika syndrome in newborns. The major structural determinant of immunity to the Zika virus is the E protein. Although B-cell epit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611143/ https://www.ncbi.nlm.nih.gov/pubmed/31316749 http://dx.doi.org/10.12688/f1000research.16454.2 |
Sumario: | Background: Cases of the re-emergence of Zika virus in 2015 were associated with severe neurologic complications, including Gillien-Barre syndrome in adults and congenital Zika syndrome in newborns. The major structural determinant of immunity to the Zika virus is the E protein. Although B-cell epitopes of Zika E protein were recently identified, data regarding epitope variations among Zika strains in pre-epidemic and epidemic periods are lacking. Methods: Here, we conducted systematic bioinformatics analyses of Zika strains isolated between 1968 and 2017. Multiple sequence alignment of E protein as well as B-cell epitopes annotations were performed. In addition, homology-based approach was utilized to construct three-dimensional structures of monomeric E glycoproteins to annotate epitope variations. Lastly, prediction of of N-glycosylation patterns and prediction of protein stability upon mutations were also investigated. Results: Our analyses indicates that epitopes recognized by human mAbs ZIKV-117, ZIKV-15, and ZIKV-19 were highly conserved, suggesting as attractive targets for the development of vaccines and immunotherapeutics directed against diverse Zika strains. In addition, the epitope recognized by ZIKV-E-2A10G6 mAb derived from immunized mice was mostly conserved across Zika strains. Conclusions: Our data provide new insights regarding antigenic similarities between Zika strains circulating worldwide. These data are essential for understanding the impact of evolution on antigenic cross-reactivity between Zika lineages and strains. Further in-vitro analyses are needed to determine how mutationsat predefined epitopes could impact the development of vaccines that can effectively neutralize Zika viruses. |
---|