Cargando…
Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent
An effective way to achieve intelligence is to simulate various intelligent behaviors in the human brain. In recent years, bio-inspired learning methods have emerged, and they are different from the classical mathematical programming principle. From the perspective of brain inspiration, reinforcemen...
Autores principales: | Chen, Jieneng, Chen, Jingye, Zhang, Ruiming, Hu, Xiaobin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611356/ https://www.ncbi.nlm.nih.gov/pubmed/31316366 http://dx.doi.org/10.3389/fnbot.2019.00040 |
Ejemplares similares
-
Perspective Taking in Deep Reinforcement Learning Agents
por: Labash, Aqeel, et al.
Publicado: (2020) -
Toward robust and scalable deep spiking reinforcement learning
por: Akl, Mahmoud, et al.
Publicado: (2023) -
Brain-Inspired Domain-Incremental Adaptive Detection for Autonomous Driving
por: Liang, Weihao, et al.
Publicado: (2022) -
Robot Cognitive Control with a Neurophysiologically Inspired Reinforcement Learning Model
por: Khamassi, Mehdi, et al.
Publicado: (2011) -
BIDL: a brain-inspired deep learning framework for spatiotemporal processing
por: Wu, Zhenzhi, et al.
Publicado: (2023)