Cargando…
Improving clinical refractive results of cataract surgery by machine learning
AIM: To evaluate the potential of the Support Vector Machine Regression model (SVM-RM) and Multilayer Neural Network Ensemble model (MLNN-EM) to improve the intraocular lens (IOL) power calculation for clinical workflow. BACKGROUND: Current IOL power calculation methods are limited in their accuracy...
Autores principales: | Sramka, Martin, Slovak, Martin, Tuckova, Jana, Stodulka, Pavel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611496/ https://www.ncbi.nlm.nih.gov/pubmed/31304064 http://dx.doi.org/10.7717/peerj.7202 |
Ejemplares similares
-
Use of a Machine Learning Method in Predicting Refraction after Cataract Surgery
por: Yamauchi, Tomofusa, et al.
Publicado: (2021) -
Comparison of ultrasound phacoemulsification and FemtoMatrix(®) PhotoEmulsification(®) cataract surgery
por: de Saint Jean, Amélie, et al.
Publicado: (2023) -
Postoperative Refraction in the Second Eye Having Cataract Surgery
por: Leffler, Christopher T., et al.
Publicado: (2011) -
Evaluation of the Nallasamy formula: a stacking ensemble machine learning method for refraction prediction in cataract surgery
por: Li, Tingyang, et al.
Publicado: (2023) -
Emerging Technology in Refractive Cataract Surgery
por: Saraiva, João, et al.
Publicado: (2016)