Cargando…
MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework
As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. H...
Autores principales: | Lee, Garam, Kang, Byungkon, Nho, Kwangsik, Sohn, Kyung-Ah, Kim, Dokyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611503/ https://www.ncbi.nlm.nih.gov/pubmed/31316553 http://dx.doi.org/10.3389/fgene.2019.00617 |
Ejemplares similares
-
Predicting Alzheimer’s disease progression using multi-modal deep learning approach
por: Lee, Garam, et al.
Publicado: (2019) -
Author Correction: Predicting Alzheimer’s disease progression using multi-modal deep learning approach
por: Lee, Garam, et al.
Publicado: (2023) -
Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer
por: Lee, Garam, et al.
Publicado: (2017) -
A Generic Multivariate Framework for the Integration of Microbiome Longitudinal Studies With Other Data Types
por: Bodein, Antoine, et al.
Publicado: (2019) -
Effective Diagnosis of Alzheimer’s Disease via Multimodal Fusion Analysis Framework
por: Bi, Xia-an, et al.
Publicado: (2019)