Cargando…

Charge localization and reentrant superconductivity in a quasi-ballistic InAs nanowire coupled to superconductors

A semiconductor nanowire with strong spin-orbit coupling in proximity to a superconductor is predicted to display Majorana edge states emerging under a properly oriented magnetic field. The experimental investigation of these exotic states requires assessing the one-dimensional (1D) character of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Estrada Saldaña, J. C., Žitko, R., Cleuziou, J. P., Lee, E. J. H., Zannier, V., Ercolani, D., Sorba, L., Aguado, R., De Franceschi, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611689/
https://www.ncbi.nlm.nih.gov/pubmed/31281880
http://dx.doi.org/10.1126/sciadv.aav1235
Descripción
Sumario:A semiconductor nanowire with strong spin-orbit coupling in proximity to a superconductor is predicted to display Majorana edge states emerging under a properly oriented magnetic field. The experimental investigation of these exotic states requires assessing the one-dimensional (1D) character of the nanowire and understanding the superconducting proximity effect in the presence of a magnetic field. Here, we explore the quasi-ballistic 1D transport regime of an InAs nanowire with Ta contacts. Fine-tuned by means of local gates, the observed plateaus of approximately quantized conductance hide the presence of a localized electron, giving rise to a lurking Coulomb blockade effect and Kondo physics. When Ta becomes superconducting, this local charge causes an unusual, reentrant magnetic field dependence of the supercurrent, which we ascribe to a 0 - π transition. Our results underline the relevant role of unintentional charge localization in the few-channel regime where helical subbands and Majorana quasi-particles are expected to arise.