Cargando…

Emergence of a real-space symmetry axis in the magnetoresistance of the one-dimensional conductor Li(0.9)Mo(6)O(17)

We report on an emerging symmetry axis in the magnetoresistance of bulk single crystals of quasi–one-dimensional Li(0.9)Mo(6)O(17) below T(min) = 25 K, the temperature at which the electrical resistivity experiences a minimum. Detailed angle-dependent magnetoresistance sweeps reveal that this symmet...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jianming, Xu, Xiaofeng, Greenblatt, M., Jin, R., Tinnemans, P., Licciardello, S., van Delft, M. R., Buhot, J., Chudzinski, P., Hussey, N. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611691/
https://www.ncbi.nlm.nih.gov/pubmed/31281877
http://dx.doi.org/10.1126/sciadv.aar8027
Descripción
Sumario:We report on an emerging symmetry axis in the magnetoresistance of bulk single crystals of quasi–one-dimensional Li(0.9)Mo(6)O(17) below T(min) = 25 K, the temperature at which the electrical resistivity experiences a minimum. Detailed angle-dependent magnetoresistance sweeps reveal that this symmetry axis is induced by the development of a negative magnetoresistance, which is suppressed only for magnetic fields oriented along the poles of the MoO(6) octahedra that form the conducting chains. We show that this unusual negative magnetoresistance is consistent with the melting of dark excitons, composed of previously omitted orbitals within the t(2g) manifold that order below T(min). The unveiled symmetry axis in directional magnetic fields not only provides evidence for the crystallization of these dark excitons but also sheds new light on the long-standing mystery of the metal-insulator transition in Li(0.9)Mo(6)O(17).