Cargando…
Deep learning for automatic Gleason pattern classification for grade group determination of prostate biopsies
Histopathologic grading of prostate cancer using Gleason patterns (GPs) is subject to a large inter-observer variability, which may result in suboptimal treatment of patients. With the introduction of digitization and whole-slide images of prostate biopsies, computer-aided grading becomes feasible....
Autores principales: | Lucas, Marit, Jansen, Ilaria, Savci-Heijink, C. Dilara, Meijer, Sybren L., de Boer, Onno J., van Leeuwen, Ton G., de Bruin, Daniel M., Marquering, Henk A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611751/ https://www.ncbi.nlm.nih.gov/pubmed/31098801 http://dx.doi.org/10.1007/s00428-019-02577-x |
Ejemplares similares
-
Three-dimensional histopathological reconstruction of bladder tumours
por: Jansen, Ilaria, et al.
Publicado: (2019) -
Histopathology: ditch the slides, because digital and 3D are on show
por: Jansen, Ilaria, et al.
Publicado: (2018) -
The First In Vivo Needle‐Based Optical Coherence Tomography in Human Prostate: A Safety and Feasibility Study
por: Swaan, Abel, et al.
Publicado: (2019) -
Prognostic Utility of the Gleason Grading System Revisions and Histopathological Factors Beyond Gleason Grade
por: Zelic, Renata, et al.
Publicado: (2022) -
Real-time diagnosis and Gleason grading of prostate core needle biopsies using nonlinear microscopy
por: Cahill, Lucas C., et al.
Publicado: (2021)