Cargando…

Bufalin-Loaded PEGylated Liposomes: Antitumor Efficacy, Acute Toxicity, and Tissue Distribution

Bufalin, derived from Venenum Bufonis, exerts antitumor effects but has low bioavailability and adverse effects when administered as a single agent. The purpose of this study was to evaluate the physical and chemical properties, antitumor efficacy, general pharmacology, acute toxicity, and tissue di...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Jiani, Zeng, Cheng, Cao, Wei, Zhou, Xuanxuan, Pan, Yang, Xie, Yanhua, Zhang, Yifang, Yang, Qian, Wang, Siwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611856/
https://www.ncbi.nlm.nih.gov/pubmed/31278603
http://dx.doi.org/10.1186/s11671-019-3057-0
Descripción
Sumario:Bufalin, derived from Venenum Bufonis, exerts antitumor effects but has low bioavailability and adverse effects when administered as a single agent. The purpose of this study was to evaluate the physical and chemical properties, antitumor efficacy, general pharmacology, acute toxicity, and tissue distribution profile of bufalin-loaded PEGylated liposomes (BF/PEG-LP), which were prepared in a previous study. To evaluate the safety of the preparation, a red blood cell hemolysis test was performed, which indicated that the hemolysis rate of BF/PEG-LP was significantly lower than that of bufalin alone. Cell viability assay revealed that the blank liposomes were nontoxic. In an in vitro experiment, BF/PEG-LP dose-dependently induced the apoptosis of HepG2, HCT116, A549, and U251 cancer cells, with half-maximal inhibitory concentration (IC(50)) values of 21.40 ± 2.39, 21.00 ± 3.34, 43.39 ± 6.43, and 31.14 ± 2.58 ng/mL, respectively, at 24 h. Tumor xenograft experiments in nude mice showed that BF/PEG-LP significantly inhibited the growth of U251 cells. Pharmacological evaluation revealed that BF/PEG-LP impacted the general behavior, independent activities, and coordination of mice after a week of administration compared with those of mice in the control group. In an acute toxicity test, the median lethal concentration (LD(50)) of BF and BF/PEG-LP in mice was 0.156 and 3.03 mg/kg, respectively. Tissue distribution profiles showed that the BF concentration in brain tissue was 20% higher, whereas that in heart tissue was 30% lower when BF/PEG-LP was administered to mice compared with BF. Thus, BF/PEG-LP exhibited lower hemolysis and cytotoxicity and improved pharmacokinetic and antitumor properties compared with bufalin alone, indicating its potential for future pharmacological application, particularly for glioma treatment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s11671-019-3057-0) contains supplementary material, which is available to authorized users.