Cargando…
Accurate estimation of cell-type composition from gene expression data
The rapid development of single-cell transcriptomic technologies has helped uncover the cellular heterogeneity within cell populations. However, bulk RNA-seq continues to be the main workhorse for quantifying gene expression levels due to technical simplicity and low cost. To most effectively extrac...
Autores principales: | Tsoucas, Daphne, Dong, Rui, Chen, Haide, Zhu, Qian, Guo, Guoji, Yuan, Guo-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611906/ https://www.ncbi.nlm.nih.gov/pubmed/31278265 http://dx.doi.org/10.1038/s41467-019-10802-z |
Ejemplares similares
-
GiniClust2: a cluster-aware, weighted ensemble clustering method for cell-type detection
por: Tsoucas, Daphne, et al.
Publicado: (2018) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
CellMapper: rapid and accurate inference of gene expression in difficult-to-isolate cell types
por: Nelms, Bradlee D., et al.
Publicado: (2016) -
Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis
por: Saadatpour, Assieh, et al.
Publicado: (2014) -
Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing
por: Han, Xiaoping, et al.
Publicado: (2018)