Cargando…

Efficient Generation of Pathogenic A-to-G Mutations in Human Tripronuclear Embryos via ABE-Mediated Base Editing

Base editing systems show their power in modeling and correcting the pathogenic mutations of genetic diseases. Previous studies have already demonstrated the editing efficiency of BE3-mediated C-to-T conversion in human embryos. However, the precision and efficiency of a recently developed adenine b...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Guanglei, Liu, Xinyi, Huang, Shisheng, Zeng, Yanting, Yang, Guang, Lu, Zongyang, Zhang, Yu, Ma, Xu, Wang, Lisheng, Huang, Xingxu, Liu, Jianqiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611966/
https://www.ncbi.nlm.nih.gov/pubmed/31279230
http://dx.doi.org/10.1016/j.omtn.2019.05.021
Descripción
Sumario:Base editing systems show their power in modeling and correcting the pathogenic mutations of genetic diseases. Previous studies have already demonstrated the editing efficiency of BE3-mediated C-to-T conversion in human embryos. However, the precision and efficiency of a recently developed adenine base editor (ABE), which converts A-to-G editing in human embryos, remain to be addressed. Here we selected reported pathogenic mutations to characterize the ABE in human tripronuclear embryos. We found effective A-to-G editing occurred at the desirable sites using the ABE system. Furthermore, ABE-mediated A-to-G editing in the single blastomere of the edited embryos exhibited high product purity. By deep sequencing and whole-genome sequencing, A or T mutations didn’t increase significantly, and no off-target or insertion or deletion (indel) mutations were detected in these edited embryos, indicating the ABE-mediated base editing in human embryos is precise and controllable. For some sites, since a different editing pattern was obtained from the cells and the embryos targeted with the same single guide RNA (sgRNA), it suggests that ABE-mediated editing might have different specificity in vivo. Taken together, we efficiently generated pathogenic A-to-G mutations in human tripronuclear embryos via ABE-mediated base editing.