Cargando…
Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans
Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteopo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612066/ https://www.ncbi.nlm.nih.gov/pubmed/31234141 http://dx.doi.org/10.1530/EC-19-0104 |
_version_ | 1783432814938554368 |
---|---|
author | Thiele, Sylvia Hannemann, Anke Winzer, Maria Baschant, Ulrike Weidner, Heike Nauck, Matthias Thakker, Rajesh V Bornhäuser, Martin Hofbauer, Lorenz C Rauner, Martina |
author_facet | Thiele, Sylvia Hannemann, Anke Winzer, Maria Baschant, Ulrike Weidner, Heike Nauck, Matthias Thakker, Rajesh V Bornhäuser, Martin Hofbauer, Lorenz C Rauner, Martina |
author_sort | Thiele, Sylvia |
collection | PubMed |
description | Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (−40%, P < 0.01 and −26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans. |
format | Online Article Text |
id | pubmed-6612066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Bioscientifica Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-66120662019-07-09 Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans Thiele, Sylvia Hannemann, Anke Winzer, Maria Baschant, Ulrike Weidner, Heike Nauck, Matthias Thakker, Rajesh V Bornhäuser, Martin Hofbauer, Lorenz C Rauner, Martina Endocr Connect Research Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (−40%, P < 0.01 and −26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans. Bioscientifica Ltd 2019-06-11 /pmc/articles/PMC6612066/ /pubmed/31234141 http://dx.doi.org/10.1530/EC-19-0104 Text en © 2019 The authors http://creativecommons.org/licenses/by-nc/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (http://creativecommons.org/licenses/by-nc/4.0/) |
spellingShingle | Research Thiele, Sylvia Hannemann, Anke Winzer, Maria Baschant, Ulrike Weidner, Heike Nauck, Matthias Thakker, Rajesh V Bornhäuser, Martin Hofbauer, Lorenz C Rauner, Martina Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans |
title | Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans |
title_full | Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans |
title_fullStr | Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans |
title_full_unstemmed | Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans |
title_short | Regulation of sclerostin in glucocorticoid-induced osteoporosis (GIO) in mice and humans |
title_sort | regulation of sclerostin in glucocorticoid-induced osteoporosis (gio) in mice and humans |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612066/ https://www.ncbi.nlm.nih.gov/pubmed/31234141 http://dx.doi.org/10.1530/EC-19-0104 |
work_keys_str_mv | AT thielesylvia regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT hannemannanke regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT winzermaria regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT baschantulrike regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT weidnerheike regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT nauckmatthias regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT thakkerrajeshv regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT bornhausermartin regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT hofbauerlorenzc regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans AT raunermartina regulationofsclerostininglucocorticoidinducedosteoporosisgioinmiceandhumans |