Cargando…

Multivariate classification of drug-naive obsessive-compulsive disorder patients and healthy controls by applying an SVM to resting-state functional MRI data

BACKGROUND: Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed intrinsic regional activity alterations in obsessive-compulsive disorder (OCD), but those results were based on group analyses, which limits their applicability to clinical diagnosis and treatmen...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xi, Hu, Xinyu, Tang, Wanjie, Li, Bin, Yang, Yanchun, Gong, Qiyong, Huang, Xiaoqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612132/
https://www.ncbi.nlm.nih.gov/pubmed/31277632
http://dx.doi.org/10.1186/s12888-019-2184-6
Descripción
Sumario:BACKGROUND: Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed intrinsic regional activity alterations in obsessive-compulsive disorder (OCD), but those results were based on group analyses, which limits their applicability to clinical diagnosis and treatment at the level of the individual. METHODS: We examined fractional amplitude low-frequency fluctuation (fALFF) and applied support vector machine (SVM) to discriminate OCD patients from healthy controls on the basis of rs-fMRI data. Values of fALFF, calculated from 68 drug-naive OCD patients and 68 demographically matched healthy controls, served as input features for the classification procedure. RESULTS: The classifier achieved 72% accuracy (p ≤ 0.001). This discrimination was based on regions that included the left superior temporal gyrus, the right middle temporal gyrus, the left supramarginal gyrus and the superior parietal lobule. CONCLUSIONS: These results indicate that OCD-related abnormalities in temporal and parietal lobe activation have predictive power for group membership; furthermore, the findings suggest that machine learning techniques can be used to aid in the identification of individuals with OCD in clinical diagnosis.