Cargando…
Improving MetFrag with statistical learning of fragment annotations
BACKGROUND: Molecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an improvement in molecule annotation based on MS/MS data. In this work we presen...
Autores principales: | Ruttkies, Christoph, Neumann, Steffen, Posch, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612146/ https://www.ncbi.nlm.nih.gov/pubmed/31277571 http://dx.doi.org/10.1186/s12859-019-2954-7 |
Ejemplares similares
-
MetFrag relaunched: incorporating strategies beyond in silico fragmentation
por: Ruttkies, Christoph, et al.
Publicado: (2016) -
Tackling CASMI 2012: Solutions from MetFrag and MetFusion
por: Ruttkies, Christoph, et al.
Publicado: (2013) -
Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag
por: Ruttkies, Christoph, et al.
Publicado: (2019) -
Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag
por: Schymanski, Emma L., et al.
Publicado: (2021) -
LipidFrag: Improving reliability of in silico fragmentation of lipids and application to the Caenorhabditis elegans lipidome
por: Witting, Michael, et al.
Publicado: (2017)