Cargando…

Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils

Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Trubl, Gareth, Roux, Simon, Solonenko, Natalie, Li, Yueh-Fen, Bolduc, Benjamin, Rodríguez-Ramos, Josué, Eloe-Fadrosh, Emiley A., Rich, Virginia I., Sullivan, Matthew B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612421/
https://www.ncbi.nlm.nih.gov/pubmed/31309007
http://dx.doi.org/10.7717/peerj.7265
_version_ 1783432884114161664
author Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
author_facet Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
author_sort Trubl, Gareth
collection PubMed
description Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.
format Online
Article
Text
id pubmed-6612421
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-66124212019-07-15 Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils Trubl, Gareth Roux, Simon Solonenko, Natalie Li, Yueh-Fen Bolduc, Benjamin Rodríguez-Ramos, Josué Eloe-Fadrosh, Emiley A. Rich, Virginia I. Sullivan, Matthew B. PeerJ Ecology Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1–2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates ‘living’ protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils. PeerJ Inc. 2019-07-04 /pmc/articles/PMC6612421/ /pubmed/31309007 http://dx.doi.org/10.7717/peerj.7265 Text en ©2019 Trubl et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Ecology
Trubl, Gareth
Roux, Simon
Solonenko, Natalie
Li, Yueh-Fen
Bolduc, Benjamin
Rodríguez-Ramos, Josué
Eloe-Fadrosh, Emiley A.
Rich, Virginia I.
Sullivan, Matthew B.
Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_fullStr Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_full_unstemmed Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_short Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils
title_sort towards optimized viral metagenomes for double-stranded and single-stranded dna viruses from challenging soils
topic Ecology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612421/
https://www.ncbi.nlm.nih.gov/pubmed/31309007
http://dx.doi.org/10.7717/peerj.7265
work_keys_str_mv AT trublgareth towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT rouxsimon towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT solonenkonatalie towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT liyuehfen towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT bolducbenjamin towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT rodriguezramosjosue towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT eloefadroshemileya towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT richvirginiai towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils
AT sullivanmatthewb towardsoptimizedviralmetagenomesfordoublestrandedandsinglestrandeddnavirusesfromchallengingsoils