Cargando…
Age‐related changes in the gut microbiota of the Chinese giant salamander (Andrias davidianus)
The composition of the intestinal microbial community may vary across developmental stages. In this study, we explored how this microbial community shifted along the intestinal tract of the Chinese giant salamander (Andrias davidianus) at various ages. Next‐generation sequencing was used to sequence...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612560/ https://www.ncbi.nlm.nih.gov/pubmed/30585426 http://dx.doi.org/10.1002/mbo3.778 |
Sumario: | The composition of the intestinal microbial community may vary across developmental stages. In this study, we explored how this microbial community shifted along the intestinal tract of the Chinese giant salamander (Andrias davidianus) at various ages. Next‐generation sequencing was used to sequence the bacterial 16S rRNA gene from different kind of samples, including the stomach, duodenum, ileum, and rectum. The highest mean relative abundance of the bacterial community in the gastrointestinal tract shifted in relation to age: within the first year, Bacteroidetes (47.76%) dominated the gut microbiome, whereas Proteobacteria was the most dominant at age 2 (32.88%) and age 3 (30.78%), and finally, Firmicutes was the most dominant at age 4 (34.70%). The overall richness of the gut bacterial community also generally increased from age 2 to 4. Hierarchical cluster analysis revealed that the gut microbiome at age 2 had greater variability than that at either age 3 or 4, likely representing a shift in diet from yolk or redworms as a juvenile to shrimp or crab as an adult. As these salamanders develop, their gastrointestinal tracts increase in complexity, and this compartmentalization may also facilitate an increase in microbial gut diversity. |
---|