Cargando…

Data showing the effects of disc milling time on the composition and morphological transformation of (α+β) titanium alloy (Ti–6Al–2Sn–2Mo–2Cr–2Zr-0.25Si) grade

In powder metallurgy, dry mechanical milling process is an effective technique employed in the reduction of solid materials into the desired size in the fabrication of materials or components from metal powders for various applications. However, the milling operation introduces changes in the size a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ogbonna, Okwudili Simeon, Akinlabi, Stephen A., Madushele, Nkosinathi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612655/
https://www.ncbi.nlm.nih.gov/pubmed/31321266
http://dx.doi.org/10.1016/j.dib.2019.104174
Descripción
Sumario:In powder metallurgy, dry mechanical milling process is an effective technique employed in the reduction of solid materials into the desired size in the fabrication of materials or components from metal powders for various applications. However, the milling operation introduces changes in the size and shape as well as the elemental or chemical composition of the milled substance. These changes introduced after milling requires critical analyses as the performance and efficiency of fabricated components depend so much on the size, shape and chemical composition of the powders. In this data, the effects of vibratory disc milling on the morphological transformation and elemental composition of titanium alloy powder were observed and analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The as received titanium alloy powder was subjected to dry mechanical milling machine rated 380V/50Hz at 940 rpm. Milling time of 2, 4, 6, 8 and 10 mins were adopted in this data collection. SEM and EDS analyses revealed that milling transformed the spherical shaped powders into plate-like shapes. This deformation in the shape of the powder increased with increase in milling time. Also, the oxygen content of the powder fluctuated as the milling time increased.