Cargando…
MOLI: multi-omics late integration with deep neural networks for drug response prediction
MOTIVATION: Historically, gene expression has been shown to be the most informative data for drug response prediction. Recent evidence suggests that integrating additional omics can improve the prediction accuracy which raises the question of how to integrate the additional omics. Regardless of the...
Autores principales: | Sharifi-Noghabi, Hossein, Zolotareva, Olga, Collins, Colin C, Ester, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612815/ https://www.ncbi.nlm.nih.gov/pubmed/31510700 http://dx.doi.org/10.1093/bioinformatics/btz318 |
Ejemplares similares
-
Prediction of mRNA subcellular localization using deep recurrent neural networks
por: Yan, Zichao, et al.
Publicado: (2019) -
Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype
por: Yin, Bojian, et al.
Publicado: (2019) -
Deep learning with multimodal representation for pancancer prognosis prediction
por: Cheerla, Anika, et al.
Publicado: (2019) -
Rotation equivariant and invariant neural networks for microscopy image analysis
por: Chidester, Benjamin, et al.
Publicado: (2019) -
DeepLigand: accurate prediction of MHC class I ligands using peptide embedding
por: Zeng, Haoyang, et al.
Publicado: (2019)