Cargando…
Rotation equivariant and invariant neural networks for microscopy image analysis
MOTIVATION: Neural networks have been widely used to analyze high-throughput microscopy images. However, the performance of neural networks can be significantly improved by encoding known invariance for particular tasks. Highly relevant to the goal of automated cell phenotyping from microscopy image...
Autores principales: | Chidester, Benjamin, Zhou, Tianming, Do, Minh N, Ma, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612823/ https://www.ncbi.nlm.nih.gov/pubmed/31510662 http://dx.doi.org/10.1093/bioinformatics/btz353 |
Ejemplares similares
-
Prediction of mRNA subcellular localization using deep recurrent neural networks
por: Yan, Zichao, et al.
Publicado: (2019) -
MOLI: multi-omics late integration with deep neural networks for drug response prediction
por: Sharifi-Noghabi, Hossein, et al.
Publicado: (2019) -
Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype
por: Yin, Bojian, et al.
Publicado: (2019) -
Robust network inference using response logic
por: Gross, Torsten, et al.
Publicado: (2019) -
Controlling large Boolean networks with single-step perturbations
por: Baudin, Alexis, et al.
Publicado: (2019)