Cargando…
ShaKer: RNA SHAPE prediction using graph kernel
SUMMARY: SHAPE experiments are used to probe the structure of RNA molecules. We present ShaKer to predict SHAPE data for RNA using a graph-kernel-based machine learning approach that is trained on experimental SHAPE information. While other available methods require a manually curated reference stru...
Autores principales: | Mautner, Stefan, Montaseri, Soheila, Miladi, Milad, Raden, Martin, Costa, Fabrizio, Backofen, Rolf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612843/ https://www.ncbi.nlm.nih.gov/pubmed/31510707 http://dx.doi.org/10.1093/bioinformatics/btz395 |
Ejemplares similares
-
Building large updatable colored de Bruijn graphs via merging
por: Muggli, Martin D, et al.
Publicado: (2019) -
Fully-sensitive seed finding in sequence graphs using a hybrid index
por: Ghaffaari, Ali, et al.
Publicado: (2019) -
cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs
por: Tolstoganov, Ivan, et al.
Publicado: (2019) -
Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort
por: Du, Lei, et al.
Publicado: (2019) -
Inheritance and variability of kinetic gene expression parameters in microbial cells: modeling and inference from lineage tree data
por: Marguet, Aline, et al.
Publicado: (2019)