Cargando…
Deep learning with multimodal representation for pancancer prognosis prediction
MOTIVATION: Estimating the future course of patients with cancer lesions is invaluable to physicians; however, current clinical methods fail to effectively use the vast amount of multimodal data that is available for cancer patients. To tackle this problem, we constructed a multimodal neural network...
Autores principales: | Cheerla, Anika, Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612862/ https://www.ncbi.nlm.nih.gov/pubmed/31510656 http://dx.doi.org/10.1093/bioinformatics/btz342 |
Ejemplares similares
-
Representation transfer for differentially private drug sensitivity prediction
por: Niinimäki, Teppo, et al.
Publicado: (2019) -
DIFFUSE: predicting isoform functions from sequences and expression profiles via deep learning
por: Chen, Hao, et al.
Publicado: (2019) -
Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities
por: Trabelsi, Ameni, et al.
Publicado: (2019) -
Prediction of mRNA subcellular localization using deep recurrent neural networks
por: Yan, Zichao, et al.
Publicado: (2019) -
DeepLigand: accurate prediction of MHC class I ligands using peptide embedding
por: Zeng, Haoyang, et al.
Publicado: (2019)