Cargando…

Locality-sensitive hashing for the edit distance

MOTIVATION: Sequence alignment is a central operation in bioinformatics pipeline and, despite many improvements, remains a computationally challenging problem. Locality-sensitive hashing (LSH) is one method used to estimate the likelihood of two sequences to have a proper alignment. Using an LSH, it...

Descripción completa

Detalles Bibliográficos
Autores principales: Marçais, Guillaume, DeBlasio, Dan, Pandey, Prashant, Kingsford, Carl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612865/
https://www.ncbi.nlm.nih.gov/pubmed/31510667
http://dx.doi.org/10.1093/bioinformatics/btz354
Descripción
Sumario:MOTIVATION: Sequence alignment is a central operation in bioinformatics pipeline and, despite many improvements, remains a computationally challenging problem. Locality-sensitive hashing (LSH) is one method used to estimate the likelihood of two sequences to have a proper alignment. Using an LSH, it is possible to separate, with high probability and relatively low computation, the pairs of sequences that do not have high-quality alignment from those that may. Therefore, an LSH reduces the overall computational requirement while not introducing many false negatives (i.e. omitting to report a valid alignment). However, current LSH methods treat sequences as a bag of k-mers and do not take into account the relative ordering of k-mers in sequences. In addition, due to the lack of a practical LSH method for edit distance, in practice, LSH methods for Jaccard similarity or Hamming similarity are used as a proxy. RESULTS: We present an LSH method, called Order Min Hash (OMH), for the edit distance. This method is a refinement of the minHash LSH used to approximate the Jaccard similarity, in that OMH is sensitive not only to the k-mer contents of the sequences but also to the relative order of the k-mers in the sequences. We present theoretical guarantees of the OMH as a gapped LSH. AVAILABILITY AND IMPLEMENTATION: The code to generate the results is available at http://github.com/Kingsford-Group/omhismb2019. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.