Cargando…

Unsupervised segmentation of mass spectrometric ion images characterizes morphology of tissues

MOTIVATION: Mass spectrometry imaging (MSI) characterizes the spatial distribution of ions in complex biological samples such as tissues. Since many tissues have complex morphology, treatments and conditions often affect the spatial distribution of the ions in morphology-specific ways. Evaluating th...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Dan, Bemis, Kylie, Rawlins, Catherine, Agar, Jeffrey, Vitek, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612871/
https://www.ncbi.nlm.nih.gov/pubmed/31510675
http://dx.doi.org/10.1093/bioinformatics/btz345
Descripción
Sumario:MOTIVATION: Mass spectrometry imaging (MSI) characterizes the spatial distribution of ions in complex biological samples such as tissues. Since many tissues have complex morphology, treatments and conditions often affect the spatial distribution of the ions in morphology-specific ways. Evaluating the selectivity and the specificity of ion localization and regulation across morphology types is biologically important. However, MSI lacks algorithms for segmenting images at both single-ion and spatial resolution. RESULTS: This article contributes spatial-Dirichlet Gaussian mixture model (DGMM), an algorithm and a workflow for the analyses of MSI experiments, that detects components of single-ion images with homogeneous spatial composition. The approach extends DGMMs to account for the spatial structure of MSI. Evaluations on simulated and experimental datasets with diverse MSI workflows demonstrated that spatial-DGMM accurately segments ion images, and can distinguish ions with homogeneous and heterogeneous spatial distribution. We also demonstrated that the extracted spatial information is useful for downstream analyses, such as detecting morphology-specific ions, finding groups of ions with similar spatial patterns, and detecting changes in chemical composition of tissues between conditions. AVAILABILITY AND IMPLEMENTATION: The data and code are available at https://github.com/Vitek-Lab/IonSpattern. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.