Cargando…
Predicting drug-induced transcriptome responses of a wide range of human cell lines by a novel tensor-train decomposition algorithm
MOTIVATION: Genome-wide identification of the transcriptomic responses of human cell lines to drug treatments is a challenging issue in medical and pharmaceutical research. However, drug-induced gene expression profiles are largely unknown and unobserved for all combinations of drugs and human cell...
Autores principales: | Iwata, Michio, Yuan, Longhao, Zhao, Qibin, Tabei, Yasuo, Berenger, Francois, Sawada, Ryusuke, Akiyoshi, Sayaka, Hamano, Momoko, Yamanishi, Yoshihiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612872/ https://www.ncbi.nlm.nih.gov/pubmed/31510663 http://dx.doi.org/10.1093/bioinformatics/btz313 |
Ejemplares similares
-
Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort
por: Du, Lei, et al.
Publicado: (2019) -
Inheritance and variability of kinetic gene expression parameters in microbial cells: modeling and inference from lineage tree data
por: Marguet, Aline, et al.
Publicado: (2019) -
Identifying and ranking potential driver genes of Alzheimer’s disease using multiview evidence aggregation
por: Mukherjee, Sumit, et al.
Publicado: (2019) -
Author Index
Publicado: (2019) -
Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts
por: Nair, Surag, et al.
Publicado: (2019)