Cargando…
Representation transfer for differentially private drug sensitivity prediction
MOTIVATION: Human genomic datasets often contain sensitive information that limits use and sharing of the data. In particular, simple anonymization strategies fail to provide sufficient level of protection for genomic data, because the data are inherently identifiable. Differentially private machine...
Autores principales: | Niinimäki, Teppo, Heikkilä, Mikko A, Honkela, Antti, Kaski, Samuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6612875/ https://www.ncbi.nlm.nih.gov/pubmed/31510659 http://dx.doi.org/10.1093/bioinformatics/btz373 |
Ejemplares similares
-
Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data
por: Climente-González, Héctor, et al.
Publicado: (2019) -
Bayesian metabolic flux analysis reveals intracellular flux couplings
por: Heinonen, Markus, et al.
Publicado: (2019) -
Deep learning with multimodal representation for pancancer prognosis prediction
por: Cheerla, Anika, et al.
Publicado: (2019) -
PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors
por: Mourragui, Soufiane, et al.
Publicado: (2019) -
Locality-sensitive hashing for the edit distance
por: Marçais, Guillaume, et al.
Publicado: (2019)