Cargando…

Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties

Dendritic spines control synaptic transmission and plasticity by augmenting post-synaptic potentials and providing biochemical compartmentalization. In principal cells, spines cover the dendritic tree at high densities, receive the overwhelming majority of excitatory inputs, and undergo experience-d...

Descripción completa

Detalles Bibliográficos
Autores principales: Foggetti, Angelica, Baccini, Gilda, Arnold, Philipp, Schiffelholz, Thomas, Wulff, Peer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613043/
https://www.ncbi.nlm.nih.gov/pubmed/31242406
http://dx.doi.org/10.1016/j.celrep.2019.05.098
_version_ 1783432988773580800
author Foggetti, Angelica
Baccini, Gilda
Arnold, Philipp
Schiffelholz, Thomas
Wulff, Peer
author_facet Foggetti, Angelica
Baccini, Gilda
Arnold, Philipp
Schiffelholz, Thomas
Wulff, Peer
author_sort Foggetti, Angelica
collection PubMed
description Dendritic spines control synaptic transmission and plasticity by augmenting post-synaptic potentials and providing biochemical compartmentalization. In principal cells, spines cover the dendritic tree at high densities, receive the overwhelming majority of excitatory inputs, and undergo experience-dependent structural re-organization. Although GABAergic interneurons have long been considered to be devoid of spines, a number of studies have reported the sparse existence of spines in interneurons. However, little is known about their organization or function at the cellular and network level. Here, we show that a subset of hippocampal parvalbumin-positive interneurons forms numerous dendritic spines with highly variable densities and input-selective organization. These spines form in areas with reduced perineuronal net sheathing, predispose for plastic changes in protein expression, and show input-specific re-organization after behavioral experience.
format Online
Article
Text
id pubmed-6613043
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-66130432019-07-18 Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties Foggetti, Angelica Baccini, Gilda Arnold, Philipp Schiffelholz, Thomas Wulff, Peer Cell Rep Article Dendritic spines control synaptic transmission and plasticity by augmenting post-synaptic potentials and providing biochemical compartmentalization. In principal cells, spines cover the dendritic tree at high densities, receive the overwhelming majority of excitatory inputs, and undergo experience-dependent structural re-organization. Although GABAergic interneurons have long been considered to be devoid of spines, a number of studies have reported the sparse existence of spines in interneurons. However, little is known about their organization or function at the cellular and network level. Here, we show that a subset of hippocampal parvalbumin-positive interneurons forms numerous dendritic spines with highly variable densities and input-selective organization. These spines form in areas with reduced perineuronal net sheathing, predispose for plastic changes in protein expression, and show input-specific re-organization after behavioral experience. Cell Press 2019-06-25 /pmc/articles/PMC6613043/ /pubmed/31242406 http://dx.doi.org/10.1016/j.celrep.2019.05.098 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Foggetti, Angelica
Baccini, Gilda
Arnold, Philipp
Schiffelholz, Thomas
Wulff, Peer
Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
title Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
title_full Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
title_fullStr Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
title_full_unstemmed Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
title_short Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
title_sort spiny and non-spiny parvalbumin-positive hippocampal interneurons show different plastic properties
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613043/
https://www.ncbi.nlm.nih.gov/pubmed/31242406
http://dx.doi.org/10.1016/j.celrep.2019.05.098
work_keys_str_mv AT foggettiangelica spinyandnonspinyparvalbuminpositivehippocampalinterneuronsshowdifferentplasticproperties
AT baccinigilda spinyandnonspinyparvalbuminpositivehippocampalinterneuronsshowdifferentplasticproperties
AT arnoldphilipp spinyandnonspinyparvalbuminpositivehippocampalinterneuronsshowdifferentplasticproperties
AT schiffelholzthomas spinyandnonspinyparvalbuminpositivehippocampalinterneuronsshowdifferentplasticproperties
AT wulffpeer spinyandnonspinyparvalbuminpositivehippocampalinterneuronsshowdifferentplasticproperties