Cargando…
Compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources
A compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources is presented. The device is capable of splitting a single X-ray pulse into two fractions to introduce time delays from −5 to 815 ps with femtosecond resolution. The split-and-delay line can opera...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613117/ https://www.ncbi.nlm.nih.gov/pubmed/31274427 http://dx.doi.org/10.1107/S1600577519004570 |
Sumario: | A compact hard X-ray split-and-delay line for studying ultrafast dynamics at free-electron laser sources is presented. The device is capable of splitting a single X-ray pulse into two fractions to introduce time delays from −5 to 815 ps with femtosecond resolution. The split-and-delay line can operate in a wide and continuous energy range between 7 and 16 keV. Compact dimensions of 60 × 60 × 30 cm with a total weight of about 60 kg make it portable and suitable for direct installation in an experimental hutch. The concept of the device is based on crystal diffraction. The piezo-driven stages utilized in the device give nanometre positioning accuracy. On-line monitoring systems based on X-ray cameras and intensity monitors are implemented to provide active alignment feedback. Performance estimates of the system are also presented. |
---|