Cargando…

Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA

BACKGROUND: Spatially accurate population data are critical for determining health impacts from many known risk factors. However, the utility of the increasing spatial resolution of disease mapping and environmental exposures is limited by the lack of receptor population data at similar sub-census b...

Descripción completa

Detalles Bibliográficos
Autores principales: Michanowicz, Drew R., Williams, Samuel R., Buonocore, Jonathan J., Rowland, Sebastian T., Konschnik, Katherine E., Goho, Shaun A., Bernstein, Aaron S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613251/
https://www.ncbi.nlm.nih.gov/pubmed/31280723
http://dx.doi.org/10.1186/s12940-019-0497-z
_version_ 1783433017836961792
author Michanowicz, Drew R.
Williams, Samuel R.
Buonocore, Jonathan J.
Rowland, Sebastian T.
Konschnik, Katherine E.
Goho, Shaun A.
Bernstein, Aaron S.
author_facet Michanowicz, Drew R.
Williams, Samuel R.
Buonocore, Jonathan J.
Rowland, Sebastian T.
Konschnik, Katherine E.
Goho, Shaun A.
Bernstein, Aaron S.
author_sort Michanowicz, Drew R.
collection PubMed
description BACKGROUND: Spatially accurate population data are critical for determining health impacts from many known risk factors. However, the utility of the increasing spatial resolution of disease mapping and environmental exposures is limited by the lack of receptor population data at similar sub-census block spatial scales. METHODS: Here we apply an innovative method (Population Allocation by Occupied Domicile Estimation – ABODE) to disaggregate U.S. Census populations by allocating an average person per household to geospatially-identified residential housing units (RHU). We considered two possible sources of RHU location data: address point locations and building footprint centroids. We compared the performance of ABODE with the common proportional population allocation (PPA) method for estimating the nighttime residential populations within 200 m radii and setback areas (100 – 300 ft) around active underground natural gas storage (UGS) wells (n = 9834) in six U.S. states. RESULTS: Address location data generally outperformed building footprint data in predicting total counts of census residential housing units, with correlations ranging from 0.67 to 0.81 at the census block level. Using residentially-sited addresses only, ABODE estimated upwards of 20,000 physical households with between 48,126 and 53,250 people living within 200 m of active UGS wells – likely encompassing the size of a proposed UGS Wellhead Safety Zone. Across the 9834 active wells assessed, ABODE estimated between 5074 and 10,198 more people living in these areas compare to PPA, and the difference was significant at the individual well level (p = < 0.0001). By either population estimation method, OH exhibits a substantial degree of hyperlocal land use conflict between populations and UGS wells – more so than other states assessed. In some rare cases, population estimates differed by more than 100 people for the small 200 m(2) well-areas. ABODE’s explicit accounting of physical households confirmed over 50% of PPA predictions as false positives indicated by non-zero predictions in areas absent physical RHUs. CONCLUSIONS: Compared to PPA – in allocating identical population data at sub-census block spatial scales –ABODE provides a more precise population at risk (PAR) estimate with higher confidence estimates of populations at greatest risk. 65% of UGS wells occupy residential urban and suburban areas indicating the unique land use conflicts presented by UGS systems that likely continue to experience population encroachment. Overall, ABODE confirms tens of thousands of homes and residents are likely located within the proposed UGS Wellhead Safety Zone – and in some cases within state’s oil and gas well surface setback distances – of active UGS wells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12940-019-0497-z) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6613251
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-66132512019-07-17 Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA Michanowicz, Drew R. Williams, Samuel R. Buonocore, Jonathan J. Rowland, Sebastian T. Konschnik, Katherine E. Goho, Shaun A. Bernstein, Aaron S. Environ Health Research BACKGROUND: Spatially accurate population data are critical for determining health impacts from many known risk factors. However, the utility of the increasing spatial resolution of disease mapping and environmental exposures is limited by the lack of receptor population data at similar sub-census block spatial scales. METHODS: Here we apply an innovative method (Population Allocation by Occupied Domicile Estimation – ABODE) to disaggregate U.S. Census populations by allocating an average person per household to geospatially-identified residential housing units (RHU). We considered two possible sources of RHU location data: address point locations and building footprint centroids. We compared the performance of ABODE with the common proportional population allocation (PPA) method for estimating the nighttime residential populations within 200 m radii and setback areas (100 – 300 ft) around active underground natural gas storage (UGS) wells (n = 9834) in six U.S. states. RESULTS: Address location data generally outperformed building footprint data in predicting total counts of census residential housing units, with correlations ranging from 0.67 to 0.81 at the census block level. Using residentially-sited addresses only, ABODE estimated upwards of 20,000 physical households with between 48,126 and 53,250 people living within 200 m of active UGS wells – likely encompassing the size of a proposed UGS Wellhead Safety Zone. Across the 9834 active wells assessed, ABODE estimated between 5074 and 10,198 more people living in these areas compare to PPA, and the difference was significant at the individual well level (p = < 0.0001). By either population estimation method, OH exhibits a substantial degree of hyperlocal land use conflict between populations and UGS wells – more so than other states assessed. In some rare cases, population estimates differed by more than 100 people for the small 200 m(2) well-areas. ABODE’s explicit accounting of physical households confirmed over 50% of PPA predictions as false positives indicated by non-zero predictions in areas absent physical RHUs. CONCLUSIONS: Compared to PPA – in allocating identical population data at sub-census block spatial scales –ABODE provides a more precise population at risk (PAR) estimate with higher confidence estimates of populations at greatest risk. 65% of UGS wells occupy residential urban and suburban areas indicating the unique land use conflicts presented by UGS systems that likely continue to experience population encroachment. Overall, ABODE confirms tens of thousands of homes and residents are likely located within the proposed UGS Wellhead Safety Zone – and in some cases within state’s oil and gas well surface setback distances – of active UGS wells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12940-019-0497-z) contains supplementary material, which is available to authorized users. BioMed Central 2019-07-08 /pmc/articles/PMC6613251/ /pubmed/31280723 http://dx.doi.org/10.1186/s12940-019-0497-z Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Michanowicz, Drew R.
Williams, Samuel R.
Buonocore, Jonathan J.
Rowland, Sebastian T.
Konschnik, Katherine E.
Goho, Shaun A.
Bernstein, Aaron S.
Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA
title Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA
title_full Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA
title_fullStr Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA
title_full_unstemmed Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA
title_short Population allocation at the housing unit level: estimates around underground natural gas storage wells in PA, OH, NY, WV, MI, and CA
title_sort population allocation at the housing unit level: estimates around underground natural gas storage wells in pa, oh, ny, wv, mi, and ca
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613251/
https://www.ncbi.nlm.nih.gov/pubmed/31280723
http://dx.doi.org/10.1186/s12940-019-0497-z
work_keys_str_mv AT michanowiczdrewr populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca
AT williamssamuelr populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca
AT buonocorejonathanj populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca
AT rowlandsebastiant populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca
AT konschnikkatherinee populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca
AT gohoshauna populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca
AT bernsteinaarons populationallocationatthehousingunitlevelestimatesaroundundergroundnaturalgasstoragewellsinpaohnywvmiandca