Cargando…
Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herei...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613709/ https://www.ncbi.nlm.nih.gov/pubmed/31237870 http://dx.doi.org/10.1371/journal.pcbi.1007157 |
_version_ | 1783433080404443136 |
---|---|
author | Forsgren, Mikael F. Karlsson, Markus Dahlqvist Leinhard, Olof Dahlström, Nils Norén, Bengt Romu, Thobias Ignatova, Simone Ekstedt, Mattias Kechagias, Stergios Lundberg, Peter Cedersund, Gunnar |
author_facet | Forsgren, Mikael F. Karlsson, Markus Dahlqvist Leinhard, Olof Dahlström, Nils Norén, Bengt Romu, Thobias Ignatova, Simone Ekstedt, Mattias Kechagias, Stergios Lundberg, Peter Cedersund, Gunnar |
author_sort | Forsgren, Mikael F. |
collection | PubMed |
description | Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. |
format | Online Article Text |
id | pubmed-6613709 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-66137092019-07-23 Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort Forsgren, Mikael F. Karlsson, Markus Dahlqvist Leinhard, Olof Dahlström, Nils Norén, Bengt Romu, Thobias Ignatova, Simone Ekstedt, Mattias Kechagias, Stergios Lundberg, Peter Cedersund, Gunnar PLoS Comput Biol Research Article Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. Public Library of Science 2019-06-25 /pmc/articles/PMC6613709/ /pubmed/31237870 http://dx.doi.org/10.1371/journal.pcbi.1007157 Text en © 2019 Forsgren et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Forsgren, Mikael F. Karlsson, Markus Dahlqvist Leinhard, Olof Dahlström, Nils Norén, Bengt Romu, Thobias Ignatova, Simone Ekstedt, Mattias Kechagias, Stergios Lundberg, Peter Cedersund, Gunnar Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort |
title | Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort |
title_full | Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort |
title_fullStr | Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort |
title_full_unstemmed | Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort |
title_short | Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort |
title_sort | model-inferred mechanisms of liver function from magnetic resonance imaging data: validation and variation across a clinically relevant cohort |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613709/ https://www.ncbi.nlm.nih.gov/pubmed/31237870 http://dx.doi.org/10.1371/journal.pcbi.1007157 |
work_keys_str_mv | AT forsgrenmikaelf modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT karlssonmarkus modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT dahlqvistleinhardolof modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT dahlstromnils modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT norenbengt modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT romuthobias modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT ignatovasimone modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT ekstedtmattias modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT kechagiasstergios modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT lundbergpeter modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort AT cedersundgunnar modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort |