Cargando…

Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort

Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herei...

Descripción completa

Detalles Bibliográficos
Autores principales: Forsgren, Mikael F., Karlsson, Markus, Dahlqvist Leinhard, Olof, Dahlström, Nils, Norén, Bengt, Romu, Thobias, Ignatova, Simone, Ekstedt, Mattias, Kechagias, Stergios, Lundberg, Peter, Cedersund, Gunnar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613709/
https://www.ncbi.nlm.nih.gov/pubmed/31237870
http://dx.doi.org/10.1371/journal.pcbi.1007157
_version_ 1783433080404443136
author Forsgren, Mikael F.
Karlsson, Markus
Dahlqvist Leinhard, Olof
Dahlström, Nils
Norén, Bengt
Romu, Thobias
Ignatova, Simone
Ekstedt, Mattias
Kechagias, Stergios
Lundberg, Peter
Cedersund, Gunnar
author_facet Forsgren, Mikael F.
Karlsson, Markus
Dahlqvist Leinhard, Olof
Dahlström, Nils
Norén, Bengt
Romu, Thobias
Ignatova, Simone
Ekstedt, Mattias
Kechagias, Stergios
Lundberg, Peter
Cedersund, Gunnar
author_sort Forsgren, Mikael F.
collection PubMed
description Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images.
format Online
Article
Text
id pubmed-6613709
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-66137092019-07-23 Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort Forsgren, Mikael F. Karlsson, Markus Dahlqvist Leinhard, Olof Dahlström, Nils Norén, Bengt Romu, Thobias Ignatova, Simone Ekstedt, Mattias Kechagias, Stergios Lundberg, Peter Cedersund, Gunnar PLoS Comput Biol Research Article Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. Public Library of Science 2019-06-25 /pmc/articles/PMC6613709/ /pubmed/31237870 http://dx.doi.org/10.1371/journal.pcbi.1007157 Text en © 2019 Forsgren et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Forsgren, Mikael F.
Karlsson, Markus
Dahlqvist Leinhard, Olof
Dahlström, Nils
Norén, Bengt
Romu, Thobias
Ignatova, Simone
Ekstedt, Mattias
Kechagias, Stergios
Lundberg, Peter
Cedersund, Gunnar
Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
title Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
title_full Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
title_fullStr Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
title_full_unstemmed Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
title_short Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort
title_sort model-inferred mechanisms of liver function from magnetic resonance imaging data: validation and variation across a clinically relevant cohort
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613709/
https://www.ncbi.nlm.nih.gov/pubmed/31237870
http://dx.doi.org/10.1371/journal.pcbi.1007157
work_keys_str_mv AT forsgrenmikaelf modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT karlssonmarkus modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT dahlqvistleinhardolof modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT dahlstromnils modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT norenbengt modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT romuthobias modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT ignatovasimone modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT ekstedtmattias modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT kechagiasstergios modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT lundbergpeter modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort
AT cedersundgunnar modelinferredmechanismsofliverfunctionfrommagneticresonanceimagingdatavalidationandvariationacrossaclinicallyrelevantcohort