Cargando…
Developmental cognitive neuroscience using latent change score models: A tutorial and applications
Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614039/ https://www.ncbi.nlm.nih.gov/pubmed/29325701 http://dx.doi.org/10.1016/j.dcn.2017.11.007 |
_version_ | 1783433109770862592 |
---|---|
author | Kievit, Rogier A. Brandmaier, Andreas M. Ziegler, Gabriel van Harmelen, Anne-Laura de Mooij, Susanne M.M. Moutoussis, Michael Goodyer, Ian M. Bullmore, Ed Jones, Peter B. Fonagy, Peter Lindenberger, Ulman Dolan, Raymond J. |
author_facet | Kievit, Rogier A. Brandmaier, Andreas M. Ziegler, Gabriel van Harmelen, Anne-Laura de Mooij, Susanne M.M. Moutoussis, Michael Goodyer, Ian M. Bullmore, Ed Jones, Peter B. Fonagy, Peter Lindenberger, Ulman Dolan, Raymond J. |
author_sort | Kievit, Rogier A. |
collection | PubMed |
description | Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using latent change score (LCS) models in longitudinal samples as a statistical framework to tease apart the complex processes underlying lifespan development in brain and behaviour using longitudinal data. LCS models provide a flexible framework that naturally accommodates key developmental questions as model parameters and can even be used, with some limitations, in cases with only two measurement occasions. We illustrate the use of LCS models with two empirical examples. In a lifespan cognitive training study (COGITO, N = 204 (N = 32 imaging) on two waves) we observe correlated change in brain and behaviour in the context of a high-intensity training intervention. In an adolescent development cohort (NSPN, N = 176, two waves) we find greater variability in cortical thinning in males than in females. To facilitate the adoption of LCS by the developmental community, we provide analysis code that can be adapted by other researchers and basic primers in two freely available SEM software packages (lavaan and Ωnyx). |
format | Online Article Text |
id | pubmed-6614039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66140392019-07-08 Developmental cognitive neuroscience using latent change score models: A tutorial and applications Kievit, Rogier A. Brandmaier, Andreas M. Ziegler, Gabriel van Harmelen, Anne-Laura de Mooij, Susanne M.M. Moutoussis, Michael Goodyer, Ian M. Bullmore, Ed Jones, Peter B. Fonagy, Peter Lindenberger, Ulman Dolan, Raymond J. Dev Cogn Neurosci Article Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using latent change score (LCS) models in longitudinal samples as a statistical framework to tease apart the complex processes underlying lifespan development in brain and behaviour using longitudinal data. LCS models provide a flexible framework that naturally accommodates key developmental questions as model parameters and can even be used, with some limitations, in cases with only two measurement occasions. We illustrate the use of LCS models with two empirical examples. In a lifespan cognitive training study (COGITO, N = 204 (N = 32 imaging) on two waves) we observe correlated change in brain and behaviour in the context of a high-intensity training intervention. In an adolescent development cohort (NSPN, N = 176, two waves) we find greater variability in cortical thinning in males than in females. To facilitate the adoption of LCS by the developmental community, we provide analysis code that can be adapted by other researchers and basic primers in two freely available SEM software packages (lavaan and Ωnyx). Elsevier 2017-11-22 /pmc/articles/PMC6614039/ /pubmed/29325701 http://dx.doi.org/10.1016/j.dcn.2017.11.007 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kievit, Rogier A. Brandmaier, Andreas M. Ziegler, Gabriel van Harmelen, Anne-Laura de Mooij, Susanne M.M. Moutoussis, Michael Goodyer, Ian M. Bullmore, Ed Jones, Peter B. Fonagy, Peter Lindenberger, Ulman Dolan, Raymond J. Developmental cognitive neuroscience using latent change score models: A tutorial and applications |
title | Developmental cognitive neuroscience using latent change score models: A tutorial and applications |
title_full | Developmental cognitive neuroscience using latent change score models: A tutorial and applications |
title_fullStr | Developmental cognitive neuroscience using latent change score models: A tutorial and applications |
title_full_unstemmed | Developmental cognitive neuroscience using latent change score models: A tutorial and applications |
title_short | Developmental cognitive neuroscience using latent change score models: A tutorial and applications |
title_sort | developmental cognitive neuroscience using latent change score models: a tutorial and applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614039/ https://www.ncbi.nlm.nih.gov/pubmed/29325701 http://dx.doi.org/10.1016/j.dcn.2017.11.007 |
work_keys_str_mv | AT kievitrogiera developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT brandmaierandreasm developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT zieglergabriel developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT vanharmelenannelaura developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT demooijsusannemm developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT moutoussismichael developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT goodyerianm developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT bullmoreed developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT jonespeterb developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT fonagypeter developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT lindenbergerulman developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications AT dolanraymondj developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications |