Cargando…

Developmental cognitive neuroscience using latent change score models: A tutorial and applications

Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using...

Descripción completa

Detalles Bibliográficos
Autores principales: Kievit, Rogier A., Brandmaier, Andreas M., Ziegler, Gabriel, van Harmelen, Anne-Laura, de Mooij, Susanne M.M., Moutoussis, Michael, Goodyer, Ian M., Bullmore, Ed, Jones, Peter B., Fonagy, Peter, Lindenberger, Ulman, Dolan, Raymond J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614039/
https://www.ncbi.nlm.nih.gov/pubmed/29325701
http://dx.doi.org/10.1016/j.dcn.2017.11.007
_version_ 1783433109770862592
author Kievit, Rogier A.
Brandmaier, Andreas M.
Ziegler, Gabriel
van Harmelen, Anne-Laura
de Mooij, Susanne M.M.
Moutoussis, Michael
Goodyer, Ian M.
Bullmore, Ed
Jones, Peter B.
Fonagy, Peter
Lindenberger, Ulman
Dolan, Raymond J.
author_facet Kievit, Rogier A.
Brandmaier, Andreas M.
Ziegler, Gabriel
van Harmelen, Anne-Laura
de Mooij, Susanne M.M.
Moutoussis, Michael
Goodyer, Ian M.
Bullmore, Ed
Jones, Peter B.
Fonagy, Peter
Lindenberger, Ulman
Dolan, Raymond J.
author_sort Kievit, Rogier A.
collection PubMed
description Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using latent change score (LCS) models in longitudinal samples as a statistical framework to tease apart the complex processes underlying lifespan development in brain and behaviour using longitudinal data. LCS models provide a flexible framework that naturally accommodates key developmental questions as model parameters and can even be used, with some limitations, in cases with only two measurement occasions. We illustrate the use of LCS models with two empirical examples. In a lifespan cognitive training study (COGITO, N = 204 (N = 32 imaging) on two waves) we observe correlated change in brain and behaviour in the context of a high-intensity training intervention. In an adolescent development cohort (NSPN, N = 176, two waves) we find greater variability in cortical thinning in males than in females. To facilitate the adoption of LCS by the developmental community, we provide analysis code that can be adapted by other researchers and basic primers in two freely available SEM software packages (lavaan and Ωnyx).
format Online
Article
Text
id pubmed-6614039
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-66140392019-07-08 Developmental cognitive neuroscience using latent change score models: A tutorial and applications Kievit, Rogier A. Brandmaier, Andreas M. Ziegler, Gabriel van Harmelen, Anne-Laura de Mooij, Susanne M.M. Moutoussis, Michael Goodyer, Ian M. Bullmore, Ed Jones, Peter B. Fonagy, Peter Lindenberger, Ulman Dolan, Raymond J. Dev Cogn Neurosci Article Assessing and analysing individual differences in change over time is of central scientific importance to developmental neuroscience. However, the literature is based largely on cross-sectional comparisons, which reflect a variety of influences and cannot directly represent change. We advocate using latent change score (LCS) models in longitudinal samples as a statistical framework to tease apart the complex processes underlying lifespan development in brain and behaviour using longitudinal data. LCS models provide a flexible framework that naturally accommodates key developmental questions as model parameters and can even be used, with some limitations, in cases with only two measurement occasions. We illustrate the use of LCS models with two empirical examples. In a lifespan cognitive training study (COGITO, N = 204 (N = 32 imaging) on two waves) we observe correlated change in brain and behaviour in the context of a high-intensity training intervention. In an adolescent development cohort (NSPN, N = 176, two waves) we find greater variability in cortical thinning in males than in females. To facilitate the adoption of LCS by the developmental community, we provide analysis code that can be adapted by other researchers and basic primers in two freely available SEM software packages (lavaan and Ωnyx). Elsevier 2017-11-22 /pmc/articles/PMC6614039/ /pubmed/29325701 http://dx.doi.org/10.1016/j.dcn.2017.11.007 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kievit, Rogier A.
Brandmaier, Andreas M.
Ziegler, Gabriel
van Harmelen, Anne-Laura
de Mooij, Susanne M.M.
Moutoussis, Michael
Goodyer, Ian M.
Bullmore, Ed
Jones, Peter B.
Fonagy, Peter
Lindenberger, Ulman
Dolan, Raymond J.
Developmental cognitive neuroscience using latent change score models: A tutorial and applications
title Developmental cognitive neuroscience using latent change score models: A tutorial and applications
title_full Developmental cognitive neuroscience using latent change score models: A tutorial and applications
title_fullStr Developmental cognitive neuroscience using latent change score models: A tutorial and applications
title_full_unstemmed Developmental cognitive neuroscience using latent change score models: A tutorial and applications
title_short Developmental cognitive neuroscience using latent change score models: A tutorial and applications
title_sort developmental cognitive neuroscience using latent change score models: a tutorial and applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614039/
https://www.ncbi.nlm.nih.gov/pubmed/29325701
http://dx.doi.org/10.1016/j.dcn.2017.11.007
work_keys_str_mv AT kievitrogiera developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT brandmaierandreasm developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT zieglergabriel developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT vanharmelenannelaura developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT demooijsusannemm developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT moutoussismichael developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT goodyerianm developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT bullmoreed developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT jonespeterb developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT fonagypeter developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT lindenbergerulman developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications
AT dolanraymondj developmentalcognitiveneuroscienceusinglatentchangescoremodelsatutorialandapplications