Cargando…
Caloric Restriction Induces MicroRNAs to Improve Mitochondrial Proteostasis
Both caloric restriction (CR) and mitochondrial proteostasis are linked to longevity, but how CR maintains mitochondrial proteostasis in mammals remains elusive. MicroRNAs (miRNAs) are well known for gene silencing in cytoplasm and have recently been identified in mitochondria, but knowledge regardi...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614116/ https://www.ncbi.nlm.nih.gov/pubmed/31279933 http://dx.doi.org/10.1016/j.isci.2019.06.028 |
Sumario: | Both caloric restriction (CR) and mitochondrial proteostasis are linked to longevity, but how CR maintains mitochondrial proteostasis in mammals remains elusive. MicroRNAs (miRNAs) are well known for gene silencing in cytoplasm and have recently been identified in mitochondria, but knowledge regarding their influence on mitochondrial function is limited. Here, we report that CR increases miRNAs, which are required for the CR-induced activation of mitochondrial translation, in mouse liver. The ablation of miR-122, the most abundant miRNA induced by CR, or the retardation of miRNA biogenesis via Drosha knockdown significantly reduces the CR-induced activation of mitochondrial translation. Importantly, CR-induced miRNAs cause the overproduction of mtDNA-encoded proteins, which induces the mitochondrial unfolded protein response (UPR(mt)), and consequently improves mitochondrial proteostasis and function. These findings establish a physiological role of miRNA-enhanced mitochondrial function during CR and reveal miRNAs as critical mediators of CR in inducing UPR(mt) to improve mitochondrial proteostasis. |
---|