Cargando…
Cancer as a Tissue Anomaly: Classifying Tumor Transcriptomes Based Only on Healthy Data
Since the turn of the century, researchers have sought to diagnose cancer based on gene expression signatures measured from the blood or biopsy as biomarkers. This task, known as classification, is typically solved using a suite of algorithms that learn a mathematical rule capable of discriminating...
Autores principales: | Quinn, Thomas P., Nguyen, Thin, Lee, Samuel C., Venkatesh, Svetha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614188/ https://www.ncbi.nlm.nih.gov/pubmed/31312210 http://dx.doi.org/10.3389/fgene.2019.00599 |
Ejemplares similares
-
Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data
por: Akter, Sadia, et al.
Publicado: (2019) -
Geolocated Twitter-based population mobility in Victoria, Australia, during the staged COVID-19 restrictions
por: Nguyen, Thin, et al.
Publicado: (2023) -
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs
por: Bard, Jonathan B. L.
Publicado: (2012) -
Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier
por: Anyaso-Samuel, Samuel, et al.
Publicado: (2021) -
Sampling and ranking spatial transcriptomics data embeddings to identify tissue architecture
por: Lin, Yu, et al.
Publicado: (2022)