Cargando…
Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
The tungsten–microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the brea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614383/ https://www.ncbi.nlm.nih.gov/pubmed/31312192 http://dx.doi.org/10.3389/fmicb.2019.01492 |
_version_ | 1783433171470123008 |
---|---|
author | Blazevic, Amir Albu, Mihaela Mitsche, Stefan Rittmann, Simon K.-M. R. Habler, Gerlinde Milojevic, Tetyana |
author_facet | Blazevic, Amir Albu, Mihaela Mitsche, Stefan Rittmann, Simon K.-M. R. Habler, Gerlinde Milojevic, Tetyana |
author_sort | Blazevic, Amir |
collection | PubMed |
description | The tungsten–microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the breakage of scheelite structure and subsequent tungsten solubilization. Total soluble tungsten is significantly higher in cultures containing M. sedula grown on scheelite than the abiotic control, indicating active bioleaching. Advanced analytical electron microscopy was used in order to achieve nanoscale resolution ultrastructural studies of M. sedula grown on tungsten bearing scheelite. In particular, we describe that M. sedula mediated the biotransformation of scheelite, which was accompanied by the release of tungsten into solution and tungsten biomineralization of the cell surface. Furthermore, we observed intracellular incorporation of redox heterogenous Mn- and Fe-containing nano-clusters. Our results highlight unique metallophilic life in hostile environments extending the knowledge of tungsten biogeochemistry. Based on these findings biohydrometallurgical processing of tungsten ores can be further explored. Importantly, biogenic tungsten carbide-like nanolayers described herein are potential targets for developing nanomaterial biotechnology. |
format | Online Article Text |
id | pubmed-6614383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66143832019-07-16 Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface Blazevic, Amir Albu, Mihaela Mitsche, Stefan Rittmann, Simon K.-M. R. Habler, Gerlinde Milojevic, Tetyana Front Microbiol Microbiology The tungsten–microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the breakage of scheelite structure and subsequent tungsten solubilization. Total soluble tungsten is significantly higher in cultures containing M. sedula grown on scheelite than the abiotic control, indicating active bioleaching. Advanced analytical electron microscopy was used in order to achieve nanoscale resolution ultrastructural studies of M. sedula grown on tungsten bearing scheelite. In particular, we describe that M. sedula mediated the biotransformation of scheelite, which was accompanied by the release of tungsten into solution and tungsten biomineralization of the cell surface. Furthermore, we observed intracellular incorporation of redox heterogenous Mn- and Fe-containing nano-clusters. Our results highlight unique metallophilic life in hostile environments extending the knowledge of tungsten biogeochemistry. Based on these findings biohydrometallurgical processing of tungsten ores can be further explored. Importantly, biogenic tungsten carbide-like nanolayers described herein are potential targets for developing nanomaterial biotechnology. Frontiers Media S.A. 2019-07-02 /pmc/articles/PMC6614383/ /pubmed/31312192 http://dx.doi.org/10.3389/fmicb.2019.01492 Text en Copyright © 2019 Blazevic, Albu, Mitsche, Rittmann, Habler and Milojevic. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Blazevic, Amir Albu, Mihaela Mitsche, Stefan Rittmann, Simon K.-M. R. Habler, Gerlinde Milojevic, Tetyana Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface |
title | Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface |
title_full | Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface |
title_fullStr | Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface |
title_full_unstemmed | Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface |
title_short | Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface |
title_sort | biotransformation of scheelite cawo(4) by the extreme thermoacidophile metallosphaera sedula: tungsten–microbial interface |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614383/ https://www.ncbi.nlm.nih.gov/pubmed/31312192 http://dx.doi.org/10.3389/fmicb.2019.01492 |
work_keys_str_mv | AT blazevicamir biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface AT albumihaela biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface AT mitschestefan biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface AT rittmannsimonkmr biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface AT hablergerlinde biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface AT milojevictetyana biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface |