Cargando…

Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface

The tungsten–microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the brea...

Descripción completa

Detalles Bibliográficos
Autores principales: Blazevic, Amir, Albu, Mihaela, Mitsche, Stefan, Rittmann, Simon K.-M. R., Habler, Gerlinde, Milojevic, Tetyana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614383/
https://www.ncbi.nlm.nih.gov/pubmed/31312192
http://dx.doi.org/10.3389/fmicb.2019.01492
_version_ 1783433171470123008
author Blazevic, Amir
Albu, Mihaela
Mitsche, Stefan
Rittmann, Simon K.-M. R.
Habler, Gerlinde
Milojevic, Tetyana
author_facet Blazevic, Amir
Albu, Mihaela
Mitsche, Stefan
Rittmann, Simon K.-M. R.
Habler, Gerlinde
Milojevic, Tetyana
author_sort Blazevic, Amir
collection PubMed
description The tungsten–microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the breakage of scheelite structure and subsequent tungsten solubilization. Total soluble tungsten is significantly higher in cultures containing M. sedula grown on scheelite than the abiotic control, indicating active bioleaching. Advanced analytical electron microscopy was used in order to achieve nanoscale resolution ultrastructural studies of M. sedula grown on tungsten bearing scheelite. In particular, we describe that M. sedula mediated the biotransformation of scheelite, which was accompanied by the release of tungsten into solution and tungsten biomineralization of the cell surface. Furthermore, we observed intracellular incorporation of redox heterogenous Mn- and Fe-containing nano-clusters. Our results highlight unique metallophilic life in hostile environments extending the knowledge of tungsten biogeochemistry. Based on these findings biohydrometallurgical processing of tungsten ores can be further explored. Importantly, biogenic tungsten carbide-like nanolayers described herein are potential targets for developing nanomaterial biotechnology.
format Online
Article
Text
id pubmed-6614383
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-66143832019-07-16 Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface Blazevic, Amir Albu, Mihaela Mitsche, Stefan Rittmann, Simon K.-M. R. Habler, Gerlinde Milojevic, Tetyana Front Microbiol Microbiology The tungsten–microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile Metallosphaera sedula leads to the breakage of scheelite structure and subsequent tungsten solubilization. Total soluble tungsten is significantly higher in cultures containing M. sedula grown on scheelite than the abiotic control, indicating active bioleaching. Advanced analytical electron microscopy was used in order to achieve nanoscale resolution ultrastructural studies of M. sedula grown on tungsten bearing scheelite. In particular, we describe that M. sedula mediated the biotransformation of scheelite, which was accompanied by the release of tungsten into solution and tungsten biomineralization of the cell surface. Furthermore, we observed intracellular incorporation of redox heterogenous Mn- and Fe-containing nano-clusters. Our results highlight unique metallophilic life in hostile environments extending the knowledge of tungsten biogeochemistry. Based on these findings biohydrometallurgical processing of tungsten ores can be further explored. Importantly, biogenic tungsten carbide-like nanolayers described herein are potential targets for developing nanomaterial biotechnology. Frontiers Media S.A. 2019-07-02 /pmc/articles/PMC6614383/ /pubmed/31312192 http://dx.doi.org/10.3389/fmicb.2019.01492 Text en Copyright © 2019 Blazevic, Albu, Mitsche, Rittmann, Habler and Milojevic. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Blazevic, Amir
Albu, Mihaela
Mitsche, Stefan
Rittmann, Simon K.-M. R.
Habler, Gerlinde
Milojevic, Tetyana
Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
title Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
title_full Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
title_fullStr Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
title_full_unstemmed Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
title_short Biotransformation of Scheelite CaWO(4) by the Extreme Thermoacidophile Metallosphaera sedula: Tungsten–Microbial Interface
title_sort biotransformation of scheelite cawo(4) by the extreme thermoacidophile metallosphaera sedula: tungsten–microbial interface
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614383/
https://www.ncbi.nlm.nih.gov/pubmed/31312192
http://dx.doi.org/10.3389/fmicb.2019.01492
work_keys_str_mv AT blazevicamir biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface
AT albumihaela biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface
AT mitschestefan biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface
AT rittmannsimonkmr biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface
AT hablergerlinde biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface
AT milojevictetyana biotransformationofscheelitecawo4bytheextremethermoacidophilemetallosphaerasedulatungstenmicrobialinterface